NASA Technical Memorandum 88280

pEst Version 2.1 User’'s Manual

James E. Murray and Richard E. Maine

September 1987

NASA

National Aeronautics and
Space Administration

NASA Technical Memorandum 88280

pEst Version 2.1 User's Manual

James E. Murray and Richard E. Maine
Ames Research Center, Dryden Flight Research Facility, Edwards, California

1987

NNASN

National Aeronautics and
Space Administration

Ames Research Center

Dryden Flight Research Facility
Edwards, California 93523-5000

CONTENTS

SUMMARY
INTRODUCTION
1 THE PARAMETER ESTIMATION PROBLEM
[.L1 Cost Function o i e e e e e e e
1.2 Equations of Motion e
2 INTERACTIVE DESIGN PHILOSOPHY IMPLEMENTED IN pEst
3 INTERFACE TO OTHER PROGRAMS
3.1 Measured Time History Data
3.2 Program Status File
3.3 Computed Time History Data
34 Command Files e
3.5 Plot Commands File
4 HOW TO RUN THE PROGRAM
4.1 Help Command e e e e
1.2 Program Startup Commands,
4.2.1 Read command L e e
422 Restorecommand
1.3 Program Termination Commands
43.1 Savecommand e e
4.3.2 Quit command e e
4.3.3 Abort command L e e e
14 Plotting Commands
44.1 Writecommand e e
44.2 Plot command e e e e e e e e e
443 thPlot command
4.5 Tterate Command L e e
4.6 System Variable Commands
4.6.1 Parameter command e e
4.6.2 Constant command e
4.6.3 Statecommand e
4.6.4 Response command
4.6.5 Flagcommand
1.7 Program Variable Commands
4.7.1 Integration method variable, ...,
4.7.2 Gradient method variable
4.7.3 Gradient delta variable
4.74 Convergence bound variable
4.7.5 Message level variable L L
4.7.6 Plottitlevariable
4.7.7 Statistics variable
4.7.8 Maneuver window variable
48 Advanced Commands e e e

iii

48.1 Docommand
4.8.2 Systemcommandt

5 ALGORITHMS

5.1 Minimization Algorithms 0.
5.2 Gradient Computation o oo
5.3 Integrating the Equations of Motion

STANDARD USER ROUTINES

6.1 Equationsof Motion
6.1.1 Stateequations oL e
6.1.2 Initial conditions Lo oo
6.1.3 Total force and moment coefficients
6.1.4 Responseequations.
6.1.5 State feedbackequations.

6.2 System Variables and Names
6.2.1 Parameters it e ittt e e e e e e e

6.2.1.1 Stability and control derivatives
6.2.1.2 State initial conditions
6.2.1.3 Instrumentation parameters
6.2.14 Feedbackgains
6.2.2 Constants i e e e e e e e e e e e
6.2.2.1 Aircraft physical characteristics
6.2.2.2 Time history variable averages
6.2.3 States e e
6.24 Controls e e e e e e e e e
6.2.5 ReSpoOnSes v i it e e e e e e e e e e e e e e
6.26 EXtras i it e e e e e e
6.27 Flags. o i i e e e

APPENDIX A—PROGRAM STATUS FILE FORMAT
A.l Version Record i i i i i i i i e e e e e e e e
A2 Title Record v i i i it e i e e e e e e e e e e e e e e e e
A.3 Parameter Record e e e e e
A4 Constant Record o i i i i e e e e e e e
Ab5Flag Record i i i i e e e e
A6 State Record i e e e e e e e e e e e e e e e e e e
A7TResponse Record i i e e e e
A8 Control Record e e e e e e e e e
A9 ExtraRecord 0 o i it e e e e e e e e e e e e
A.10 Maneuver and Window Records
A.11 Option Records o it e e

APPENDIX B—HELP FILES
Bl ADOIt & . . e
B2Bound e
B3 Constant v v i i e
B Constants e
B.5 Controls o i e

iv

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

.........

Bl EXtras . .« v vt e 33

BT Tlag e e e e e e e e e 34
BBEFIags o i i e e e e e e e e e e e 35
B.O GradDelta e e e e e e e e e e e e e e e e e 36
B.10 GradMeth e e e e e e e e e 36
Bl IntegMeth e e 37
B2 Tterate o e e e e e e e e e e e e e e e e e e e 38
B.13 MinMeth e e e e e 39
B.14 MsgLevel e 41
B.15 Parameter e e e e e e e e e e e e e e e e 43
B.16 Parameters e e e e e e e e e e e e e e e 44
BATDESE « o ot e e e e e 47
B8 Plot . . . e e e e e e e e e e 49
B.19 Quit . . . L e e e e e e e e e e e e e e e e 50
B.20 Read e e e e e e e e 51
B.21 Respomse o . . e e e e e e e 52
B.22 Responses L e e e e e e e e e 54
B.23 Restore o e e e 54
B2dSave e e e e e e e e e e e e e 57
B.25 Set e e e e 58
B.26 Show e e e e e e e e e e e e 59
B.27 State e e e e e e e e e 59
B.28 States e e e e e e e 61
B.29 Statistics e e e e e 62
B30 thPlot e e 62
B3l Title o o e e e e, 63
B.32 Version e e e e e, 64
B33 Window e e e e 66
B34 Write . . . L e 67
RIEFERENCES 69

SUMMARY

This report is a user’s manual for version 2.1 of pEst, a FORTRAN 77 computer program for interactive
parameter estimation in nonlinear dynamic systems. The pEst program allows the user complete
generality in defining the nonlinear equations of motion used in the analysis. The equations of motion
arc specified by a set of FORTRAN subroutines; a set of routines for a general aircraft model is
supplied with the program and is described in the report. The report also briefly discusses the scope
of the parameter estimation problem the program addresses. The report gives detailed explanations
of the purpose and usage of all available program commands and a description of the computational
algorithis used in the program.

INTRODUCTION

Parameter estimation techniques, in one form or another, have been in use at NASA Ames Research
Center’s Dryden Flight Research Facility (Ames-Dryden) and other research organizations for many
years. High-speed digital computers were first used for parameter estimation in 1968 (ref. 1), and
the number of parameter estimation computer programs available has since greatly increased. The
MMLES3 program (modified maximum likelihood estimation program, version 3) developed at Ames-
Dryden (ref. 2) has been accepted as an industry standard for aircraft parameter estimation and has
heen used on a variety of aircraft programs. The MMLE3 program is representative in two respects
of the majority of parameter estimation programs currently in use. First, it is designed for use solely
in a batch processing environment. Second, the equations of motion defining the dynamic model used
in the prograin are linear. For a large class of well-behaved parameter estimation problems, these two
characteristics pose no serious limitations in the utility of the program.

Recent flight test experience at Ames-Dryden has pointed out some of the limitations inherent
in current parameter estimation programs. The dynamic behavior of aircraft at the extreme flight
conditions currently being explored often cannot be appropriately modeled using the simple linear
dynamic equations of motion. More accurate and flexible nonlinear models are often needed. The
difficulties associated with extreme flight conditions, as well as those associated with the unique aircraft
configurations currently being flown, have required significantly more attention from the analyst than
previously. Interaction between the analyst and the estimation program is often the only viable means
for obtaining results in a finite amount of time.

In response to these problems, Ames-Dryden researchers have developed a new parameter estimation
program, pEst. The pEst program is designed to be fully interactive; however, it can be run in a batch
mode. The program supports full nonlinear capability in the dynamic equations of motion; linear
equations are acceptable as a subset.

This report documents the design philosophy, capabilities, and operational use of the pEst program.
Section 1 defines the parameter estimation problem that pEst solves. Section 2 describes the philosophy
of interactive program design as implemented in pEst. Section 3 describes the external files used by
the program and how the program interfaces with other programs. Section 4 gives a description of each
command in the pEst command set. Section 5 discusses various algorithms available during program
use. Secction G defines the standard user routines supplied with the program. Both the equations of
motion and the definition of all system variables used in the equations are included. In this manual,
file names, program prompts, and literal program input are shown in italics to distinguish them from
other text. The appendixes contain information on file formats used by the program (app. A) and
listings of the help files used in the program (app. B).

1 THE PARAMETER ESTIMATION PROBLEM

Conceptually, the parameter estimation problem is straightforward: We are studying a physical system,
and we write a vector set of dynamic equations of motion that (hopefully) describes a model of the
actual system. We presume to know the form of the equations but not the values of certain parametric
variables in the equations. We perform an experiment with the actual physical system, recording
the input to the sytem and the response of the system to the input. We seek to infer the values of
the unknown parameters by adjusting their values in the model until its response agrees with the

measured response.

The pEst program does two things. First, the program defines quantitatively the criterion for
measuring the agreement between the model’s computed response and the measured response. Second,
it mechanizes the search for the unknown parameter values.

Figure 1 illustrates the pEst parameter estimation process. The number in each block refers to the
section in this manual describing the function of the block.

Noise
Control Measured
i
nput - Test 5 response
aircraft
i Computed
Nonlinear aircraft response -
model ZP
(1.2)
Response
residual
Minimization Cost
algorithms [«— function
(5.1) (1.1)
Estimate of £
(6.2.1)
Parameter estimates
Uncertainty bounds 728

Figure 1. The pEst parameter estimation process.

1.1 Cost Function

The criterion is a scalar cost function that is an explicit function of the computed response and thus
an implicit function of the vector of unknown parameters. The cost function used in the program is
1 s

J(€) = D [=(t) =)" Wz (t:) - £(t:)] (1)
=1

where n; and 7, are the numbers of time history points and response variables respectively, t is the

time variable, W the response weighting matrix, z the measured response, Z the response computed

by integrating the equations of motion, ¢ the parameter vector, and superscript * denotes transpose.

2nznt

The cost function is quadratic in the computed response 3.

1.2 Equations of Motion

The pEst program solves a vector set of time-varying, finite-dimensional, ordinary differential equations
of motion. The equations are separated into the continuous-time state equation and the discrete-time
response equation:

(t) flz(t), u(®), €] (2)
2(t:) glz(t:), u(ti), €] (3)

where f is the state derivative function, g the response function, u the control variable, and z the
state variable.

We have implemented a discrete-time feedback feature in the equations of motion. The feedback
feature is similar in implementation and function to the process noise feature of the MMLE3 program
(ref. 2). The nonlinear equations used in pEst, however, preclude using the discrete-time Kalman
filter formulation of MMLE3; an ad hoc and intuitive approach is used in pEst. The feedback term is
proportional to the difference between the measured and computed responses and is applied at each
time point. The feedback gains k are parameters adjustable by the user (see section 6.2.1.4).

&(t:) = &(t) + k[2(t:) — 2(t:)] (4)

where Z is the corrected estimate of the state variable and Z is the predicted estimate.

Input u and time ¢ are assumed to be known exactly. The responses are measured at every sample
point. There is no restriction that the sample rate be constant. The state derivative function f and
the response function g are nonlinear functions of the parameter, state, input, and time. The specific
form of the functions f and g is defined by a set of user-modifiable subroutines in pEst; the equations
supplied with the program are documented in section 6.1.

2 INTERACTIVE DESIGN PHILOSOPHY IMPLEMENTED
IN pEst

The first priority of any interactive program is a simple and efficient interface with the user; we have
paid very close attention to the program’s interface. Initially, we used a hierarchical menu-driven
interface. llowever, we soon found the menu structure cumbersome, difficult, and sometimes even
dangerous. We have rewritten the interface completely, adopting a simple command-driven interface.
All program commands and capabilities are available for use at any time. Each command starts with a
simple English key word; we also allow a wide range of synonyms and abbreviations for each command
key word.

Frror detection and correction are integral parts of any program, interactive or otherwise. A
simple and responsive interface, however, gives the user greatly increased opportunities for making
mistakes. In the interactive environment, good error handling becomes increasingly important. We
have implemented error detection at every potential error source identified, and where possible we have
applied error recovery procedures. We have made every attempt to make it impossible for you to crash
the program. The program gives a one-line response to each error detected; we have attempted to give
brief yet meaningful error messages. We leave all detailed explanations to the help files.

Ouline help files are also an integral part of any interactive program. Interactive program input calls
for interactive troubleshooting of input errors. We have incorporated an online help facility into the

programn. Each program command has its own help file detailing the use and syntax of the command.
Additionally, we have incorporated information on subjects of interest to the program user into the help
file system. All help files are accessible during program use; they are also available outside the program.

Interactive programs are generally reserved for difficult problems, where the approach to the solution
is not clear at the outset. The solution progress tends to be discontinuous and incremental, with
nurnerous dead ends met during the process. Efficient interactive problem solution requires a means
of recovery from such dead ends. We have implemented a program feature that greatly enhances the
potential to recover from errors and to restart the program if necessary. We have defined a program
status file on which you can record the current status of the program at any point, thus allowing you
to maintain an ancestor that can be used in the event of reaching a dead end. Effective use of the
status file gives you freedom to experiment with different approaches to the problem, without fear of
losing any progress already made.

The pEst program is an interactive program. Some problems do not require much user interaction
to obtain a solution. If you can define a sequence of pEst commands that, when executed, will solve
the problem, you can use the program in a batch operating mode.

3 INTERFACE TO OTHER PROGRAMS

The pIist package must be installed on your computer. Depending on the operating system and specific
installation, a few features of the program may not be available (notably the help facility).

The plist package consists of three separate programs. The pEst program itself is the parameter
estimation program. The thPlot program plots time history data and time history fits. The GetData
program (ref. 3) selects signals and maneuver times for analysis. In use, the pEst program interfaces
with these and other programs through several files external to the program. All file names used
by pEst and other programs are italicized in the following sections only to distinguish them from
other text.

3.1 Measured Time History Data

A file of measured time history data for the case to be analyzed must be available in a form suitable to
the program. The program reads the entire measured time history file into memory; the upper limit on
the number of time points that the program can handle is 2000. This limit can be easily changed by
a single-line modification in the program code. While you can interactively select subsets of the time
history for use in the analysis (see section 4.7.8), it is most convenient for the measured time history
to approximate the time interval or intervals to be used. The time between sample time points on the
file need not be constant. The measured time history data file is never rewritten or altered by pEst.

Operationally, the measured time history file is divided into one or more time intervals called ma-
neuvers. Bach maneuver is treated as a complete and separate time history record in the integration of
the equations of motion; the integration is reinitialized at the beginning of each maneuver. All maneu-
vers are used together in the estimation process; program variables, including estimated parameters,
apply to all time points in all maneuvers. The program automatically breaks the time history into
maneuvers when reading the file; a new maneuver is defined when one of two conditions is found. Both
conditions are based on time values for successive time points read. If the time is nonincreasing or if
the timme increment exceeds a certain value (1.0 sec), then a new maneuver is started. In the simplest

and most common case, the file consists of a single maneuver. The maneuver times defined by the
program may be displayed (see section 4.7.8).

By default, pEst expects the time history data to be on a file named measured. Other file names
can be specified by user command.

The measured time history file is normally produced by the GetData program, which selects the
desired times and signals from the available data. The pEst program recognizes signals by their names;
therefore the signal names on the file must match those expected by pEst. The GetData program can
rename signals if required. The signal names expected by the standard user routines are documented
in scction 6.2. The GetData program and the file format are documented separately in reference 3.

3.2 Program Status File

The program uses a status file to store the operational status of the program. With the exception of
time history data, the status file stores the value of every program variable. Effective use of the status
file is central to efficient use of the program. The status file serves three purposes. First, it can provide
initial values for program variables and options at program startup. Second, it can store the program
status to be used for later program recovery or restart. Third, it can store summary results at the
conclusion of a run.

Efficient production use of pEst requires a status file at program startup. This file is not strictly
required, as all variables are initialized with default values, which you can then change interactively.
Ilowever, manually setting the many variables for each case is laborious if many cases are to be analyzed.

The initial status file can be obtained from one of several sources. For a large project, you will
normally want to write a program that automatically creates an initial status file for each case; this
program should get starting parameter estimates from the simulation data base. A status file (from
whatever source) for one case can be copied and used to initialize another case; any reqiiired modifi-
cations can be made interactively. Making the required modifications is likely to take less effort than
starting from scratch.

Program status can be saved or recovered at any time during program use. This feature provides
a strong error-recovery capability. By saving the program status at appropriate intervals, you can
continuously maintain a fallback position. Should you reach a dead end in the analysis, you can simply
recover your previous program status and try a different approach to the problem.

Normal termination of pEst saves a file that reflects the complete program status prior to termina-
tion. This file can be used by any program that analyzes or displays the results of pEst. It can also be
used with or without modifications as an initial status file for later cases.

By default, the program expects the file to be named current; other file names can be specified by
user command.

The format of the status file is documented in appendix A.

3.3 Computed Time History Data

A file of time history data computed by the program is available for use outside the pEst program.
The computed time history file is used by the thPlot program when plotting time history fits. It can
also be used by several other programs.

‘T'he format of the computed time history file is identical to that of the measured time history file.
The default name for the file is computed; other file names can be specified by user command.

3.4 Command Files

The pEst program is an interactive program, with commands normally entered singly from the terminal
keyboard. Sometimes, however, you might have a sequence of commands that you will be executing
as a group more than once. The program provides a way of automating such repetitive tasks. If you
write the desired sequence of commands on a file, you can then instruct pEst to execute the commands
from that file as though they were typed from the keyboard (see section 4.8.1). After executing all the
commands in the file, control is returned to the terminal.

There is no default name for the command file; any name can be specified by user command.

3.5 Plot Commands File

‘The pLst program runs the thPlot program when plotting time history fits. A temporary scratch file
is created to communicate information from pEst to thPlot whenever plotting. In normal operational
use, this file is deleted after the successful completion of the plotting, so you should never be aware of
its existence. In the event of catastrophic program failure, however, it is possible that this file, named
plst_thPlot.temp, might remain in existence.

4 HOW TO RUN THE PROGRAM

The pEst user interface is command driven; there is no menu. There is a single level of interaction
between you and the program; all commands are available at any time. The program will atcept com-
mands when it issues the prompt pest command. The program recognizes a large set of commands; it
is your responsibility to know the available command set and enter an appropriate command. Each
command starts with a simple English key word and is followed by optional specifications. An inter-
active help facility is available to help you find both the appropriate command and the proper syntax
of a command.

Each command controls a different aspect of the program; the applicable set of specifiers and their
syntax arc command dependent. Several specifiers, however, are used in the same syntax in several
commands; their usage and syntax are documented in the following sections.

Several commands use switches to specify program options. A switch has one of two values;
it turns an option either on or off. Most switches have one or more synonyms and antonyms, which
are documented in the help files. Which name you use is a matter of personal preference and context;
some fit more naturally into a certain command context than others. An algebraic sign is part of the
switch specification; inverting the sign inverts the value of the switch. For example, —false is equivalent
to +true.

Several commands also use key word and value pairs to specify program options. A key word and
value pair assigns a value to a program variable. The key word is a word or abbreviation recognized
by the program that corresponds to a variable in the program. The key word is delimited by a space
or an equals sign and is followed by a value of the correct type.

All input to pEst is case insensitive; you can use any mixture of upper- and lower-case letters.
Most key words, program variable names and values, and switches can be abbreviated. The minimum

6

recognizable abbreviations are indicated by the underlined letters of each key word, variable, or switch
as first described in the following sections. Many key words also have synonyms.

The following sections document the individual commands of the pEst command set.

4.1 Help Command

The help command is the most important command in the program; the online help facility provides
comprchensive and detailed descriptions of program commands, variables, and subjects of interest.
There are three classes of information available: commands, variables, and topics. The commands
help commands, help variables, and help topics give you listings and short (one-line) descriptions of all
available commands, program variables, and topics, respectively. If you use help with the name of a
specific command, program variable, or topic, you get a detailed help file listing giving information
on syntax and usage and a few examples. When using the help command with a specific command
or variable name, you must use the full primary name of the command or variable; synonyms and
abbreviations are not acceptable. If you use the help command with no arguments, you get a brief
description of the help facility.

All help file listings are included in appendix B.

The help command uses operating-system-specific software. Its implementation may differ depend-
ing on the operating system, and it may not be implementable on some systems.

Examples of the help command are

HELP

Help variables
help iterate
HELP PARAMETERS

4.2 Program Startup Commands

The program cxpects two files to be available at startup: a measured time history data file and an
initial status file. If they are available, pEst automatically reads the measured time history file from
the file measured and the initial program status from the file current. Both are default file names for
the respective files. Two commands are available to get startup data from different files or to restart
without exiting the program.

4.2.1 Read command.—Use the read command to read a measured time history data file into
prograin memory. At this time, the program checks to see if all signals defined in the program (see
section 6.2) are found on the file. If a signal is not found on the file, a constant value of zero is
used for the time history of that signal. Some program variables, such as maneuvers (see section 3.1)
and windows (sce section 4.7.8), are automatically reset whenever a read command is executed. You
can specily the name of the file to be read; if you omit the file name, the program uses the name last
specified in a read command. The program automatically attempts to read the file measured at startup.

If the file does not exist or the program cannot successfully read the file for any reason, no
tie history data are stored in memory, an error message is printed, and control is returned to the
command line.

If there are no measured time history data in program memory, some commands will not be accepted
by the program. In particular, any command requiring integration of the equations of motion (such
as iterating) will not be accepted; if you attempt any such command, an error message is printed, and
control is returned to the command line.

Examples of read commands are

READ
Read measured.caseb

4.2.2 Restore command.—Use the restore command to read the program status from a status
file. You can specify the name of the file to be read; if you omit the file name, the program uses the
name last specified in a restore command. The program automatically attempts to read the file current
at startup.

If the file does not exist when you attempt to read it, an error message is printed, and control is
returned to the command line. If the program fails when reading a file, all program variables successfully
read into program memory up to that point are retained, an error message is printed, and control is
returned to the command line.

Examples of restore commands are

Restore
REST current.fl1ti8.man6

4.3 Program Termination Commands

Several commands are available for terminating the program. Program status can be saved at program
termination if desired.

4.3.1 Save command.—Use the save command to write the program status to a status file.
You can specify the name of the file to be written; if you omit the file name, the program uses the
name last specified in a restore command. The default file name at program startup is current. If a
file with the specified name exists, it is overwritten.

If the program fails when writing a status file, no status file is written, an error message is printed,
and control is returned to the command line.

Examples of save commands are

Save
save curr.final

4.3.2 Quit command.—Use the quit command to write the current program status to a status
file and then terminate the program. This is exactly equivalent to running, in order, the save and abort
comnmands. Note that you cannot specify the name of the status file to be written; the program uses
the name last specificed in a restore command.

If the program fails when writing the status file, the file is not written, an error message is printed,
and the program terminates.

An cxample of the quit command is

quit

4.3.3 Abort command.—Use the abort command to terminate the program and return control
to the operating system. This command does not save the current program status; any progress made
since you last ran a save command is lost.

An example of the abort command is

Abort

4.4 Plotting Commands

The pEst program uses the thPlot program for plotting time histories of response variable fits and
other variables. The pEst program communicates with thPlot through a file containing computed time
history data.

The equations of motion are integrated to produce the time history of the computed variables. All
computed variables are first assigned constant default values for the entire time history. The program
then integrates the equations of motion using current program status, replacing the default values with
the computed values as the integration proceeds. If the integration fails for any reason, the computed
time histories up to the point of failure are stored, an error message is printed, and the integration
is terminated.

4.4.1 Write command.—Use the write command to write the computed time history data from
program memory to an external file. Time histories for all computed state and response variables are
written to the file. The time histories of all computed variables are made consistent with the current
program status prior to writing the computed time histoty file by integrating the equations of motion
using the current program status. Time histories for all response residual variables, as well as measured
control, response, and extra variables, are also written to the file. You can specify the name of the file
to be written; if you omit the file name, the program uses the name last specified in a write command.
The default file name at program startup is computed.

If a file with the specified name already exists, it is overwritten. If no measured time history data
are in program memory, the computed time history file is not written, an error message is printed, and
control is returned to the command line. If the integration terminates prematurely for any reason, an
error message is printed, but the computed time history file is still written. If the program fails to
write the file, an error message is printed, and control is returned to the command line.

Examples of the write command are

write
Write computed.maneuveriOg

4.4.2 Plot command.—Use the plot command to plot time history fits for all active response
variables (see section 4.6.4) using the thPlot program. The computed time histories are first written
to an external file by automatically running a write command. The time histories are plotted four per

page; multiple pages are plotted if required. The measured response and computed response are both
plotted on the same axis; the axis is automatically scaled to accommodate both variables. You can
optionally request plots of additional time history variables (response residuals, states, controls, and
extras); the plots for these variables follow the plots of the time history fits of the response variables.

If no measured time history data exist in program memory, an error message is printed, and no
plots are made. If the integration terminates prematurely for any reason, an error message is printed,
but plots are still made. If the program fails to write the computed history file for any reason, an error
message is printed, and no plots are made.

Fxamples of the plot command are

Plot
plot +resids +states

4.4.3 thPlot command.—Use the thPlot command to run the thPlot program from within
pEst. The computed time histories are first written to an external file by automatically executing the
write command. The pEst program does not communicate with thPlot when using this command; you
have complete freedom to read any files and plot any signals desired. After thPlot terminates, control
is returned to pEst.

An example of the thPlot command is

thplot

4.5 Iterate Command

Use the iterate command to start the iterative parameter estimation process. You can specify the
maximum number of iterations and the desired minimization algorithm. If you do not specify the
number of iterations, no iterations are done; the equations of motion are integrated, and the cost
function is evaluated. The three minimization algorithms available are gradient, Newton-Raphson, and
Davidon-Fletcher-Powell. If you omit the minimization algorithm, the algorithm last specified remains
in effect. The default algorithm at program startup is Newton-Raphson. All the iterations specified
with a single iterate command use the same minimization algorithm.

Before attempting to iterate, the program tests the validity of the current program status for
estimation; if the validity test fails, iterating is not allowed, and control is returned to the command
line. Tor example, if no measured time history data are in program memory, iterating will not be
allowed. If all validity tests succeed, the program iterates until either the specified number of iterations
is completed or the convergence criterion (see section 4.7.4) is met. The iterative process may terminate
with one or several error messages if any of numerous problems is detected. If the estimation is
prematurely terminated, all progress made up to the point of failure is retained and is reflected in the
current program status.

Examples of the iterate command are
Iterate 6 newton-raphson

it 3
IT

10

4.6 System Variable Commands

The equations of motion define the dynamic system analyzed by the program. The equations of
motion contain numerous time history and parametric variables defining the specific characteristics of
the dynamic system. The system variable commands allow you to display and to modify these variables
and therefore the characteristics of the dynamic system. The time history and parametric variables are
vector variables, and each vector element has several characteristics or attributes. Each system variable
command allows you to display and to modify the attributes of selected elements of a specified vector.

The first part of each system variable command selects elements of the vector to be displayed or
modified. The syntax of this specification is common to all system variable commands. A generalized
list of vector elements follows the command name. The list can be a list of element names, delimited
by commas or blanks. It can also be one of two key words, all or active; all selects all elements of
the vector, and active selects the vector elements with active status. The definition of active status is
dependent on the vector and is defined in each of the following command descriptions. If the list is
omitted, all active elements are selected by default. Whenever you execute a system variable command,
the values of the selected elements are displayed.

For each system variable command, several optional descriptors control the attributes to be
displayed or modified. The order in which they are specified on the command line is immaterial. The
descriptors and the syntax for using them are documented in each of the following
command descriptions.

4.6.1 Parameter command.—Use the parameter command to display and modify the at-
tributes of the parameters. The parameters are the variables that can be estimated by the program.
Each parameter has five attributes: current value, estimation status, predicted value, Cramér-Rao
bound, and change in value from previous iteration. The current values of the selected parameters are
always displayed after the command is entered. The estimation status of a parameter is active or inac-
tive; an active parameter is one that is currently being estimated, while an inactive parameter is one
that is not. You can modify the estimation status of the selected parameters with the +active switch.
The predicted value of a parameter is fixed and can only be displayed with the +predicted switch. The
Cramér-Rao bound and the change in parameter value from the previous iteration are defined in the
estimation process and cannot be directly modified by the user; they can only be displayed with the
+bound and +delta switches, respectively. You can modify the current value of a parameter in one
of two ways. You can explicitly specify a value, and that value is assigned to all selected parameters.
Alternatively, you can turn on the +restore switch, and each selected parameter will be reset to its
corresponding predicted value.

The parameters defined by the standard user routines are documented in section 6.2.1.
Examples of parameter commands are

PARAMETER c¢lp=-0.25

par cma,cNorma cmde,cNormde +on

Par Active +Restore
parm +cr +delta

4.6.2 Constant command.—Use the constant command to display and modify the constants
in the program. The constants are program variables that cannot be estimated by the program. The

11

value of each selected constant is always displayed after the command is entered. You can modify the
value of a constant; the specified value is assigned to all selected constants.

The constants defined by the standard user routines are documented in section 6.2.2.

Examples of constant commands are

constant mass=1056.0
CONST ixy,iyz 0.
Const all

4.6.3 State command.—Use the state command to display and modify the attributes of the
state variables in the program. A state variable has two attributes: its status and its integration limit. If
a state is active, the state equation for the state is integrated, and this integrated value is used in the
equations of motion. If a state is inactive, the state equation is not integrated, and the equations of
motion are modified to remove the corresponding state equation. You can modify the status of the
selected state variables with the +active switch. The integration limit for a state variable is used to
avoid catastrophic program failure during integration of the equations of motion. If during integration
the value of a state variable exceeds its limit, an error message is printed, and the integration is

terminated. The integration limit is a floating-point value specified using the limit key word and
value pair.

The state variables defined by the standard user routines are documented in section 6.2.3.

Examples of state commands are

state v,alpha,an,q +on
STATE p r 1im=10000.

4.6.4 Response command.—Use the response command to display and modify the attributes
of the response variables in the program. A response variable has two attributes: its status and its
weighting. The status of a response variable determines whether or not the response variable time
history is computed. If a response is active, the response variable time history is computed and made
available for other uses. If a response is inactive, no response time history is computed. You can
modify the status of the selected response variables with the tactive switch. The weighting of a
response variable specifies the variable’s weighting in the cost function and is specified with the weight
key word and value pair. The key word output is a synonym for response.

Note that making a response variable inactive is not equivalent to making its weighting zero. If a
response variable is made inactive, the equations of motion are modified to remove the corresponding
response equation. There may also be secondary changes in the equations of motion to remove all
usage of the response variable. These secondary changes depend on the equations of motion used. If
the response is active but has zero weighting, the response is computed and used in the equations of
motion but does not directly influence the cost function.

The response variables defined by the standard user routines are documented in section 6.2.5.

Examples of response commands are

response beta p r +on
OUT alpha w=150.

12

4.6.5 Flag command.—Use the flag command to display and modify the flags in the program.
A flag is a logical variable used in the equations of motion. The flags typically select alternative forms
of the equations of motion or sources of data. You can modify the value of a flag with the +on switch;
the switch value is assigned to all selected flags.

The flags defined by the standard user routines are documented in section 6.2.7.

Examples of flag commands are

flag use_avg._gbar
Flag use_avg_alpha,use_avg_beta +ON
FLAG all +off

4.7 Program Variable Commands

Usc the set and show commands to display and modify the program variables and options controlling
the estimation process.

The set command sets the value of program variables. With one exception, the command syntax is
the command key word followed by a key word and value pair specifying a program variable and setting
its value. The valid key words and the program features they control are described in the following
scctions. Each key word is given with its first few letters underlined; the underlined portion is the
minimum abbreviation recognized by the program. The value type is dependent on the variable; for
cach variable described, the range of legal values is specified. Any variable modified by the command
is displayed.

The show command allows you to display the values of program variables. The command syntax
is the command key word followed by a variable name or appropriate abbreviation. In addition to the
variables described by the set command, there is one variable that is only displayable.

4.7.1 Integration method variable.— The integMeth variable specifies the algorithm used
when integrating the equations of motion. The variable has two possible values, euler and runge-kutta;
the default value is runge-kutta.

Examples of the use of the integration method variable are

show integMeth
SET integ runge

4.7.2 Gradient method variable.—The gradMeth variable specifies the algorithm used when
computing the finite-difference gradients. The variable has two possible values: single-sided specifies the
forward difference algorithm, and double-sided specifies the central difference algorithm. The default
value is single-sided.

FExamples of the use of the gradient method variable are

sh gradmethod
Set GradM 2

13

4.7.3 Gradient delta variable.—The gradDelta variable specifies the parameter increment

used in computing the finite-difference gradients. The parameter increment used for each parameter is
defined by

d¢ = gradDelta * max(£,0.000001)
where £ is the parameter value and d€ is the parameter increment.
Valid values are floating-point numbers; the program default value is 0.0000001.

Fxamples of the use of the gradient delta variable are

sh graddelta
SET GRADD=0.0001

4.7.4 Convergence bound variable.—The bound variable defines the convergence criterion for
the estimation process. If the percentage change in cost between two successive iterations drops below
the value of the bound variable, convergence is declared, and the iterative process is terminated. Valid
values for this variable are floating-point numbers; the program default value is 0.0001.

Examples of the use of the convergence bound variable are

SHOW BOUND
set bound 1.0e-6

4.7.5 Message level variable.—The msgLevel variable controls the amount of output that the
program prints during use. Higher values produce larger amounts of output. Valid values for the
variable are integers between 0 and 100; the default value is 50. The help file lists the significance of
the various numerical values.

Fxamples of the use of the message level variable are

sho msg
Set MsgLev=65

4.7.6 Plot title variable.—The title variable specifies the title used on the time history plots
of response fits. Valid values are character strings of up to 40 characters. If there are blanks embedded
in the string, you must put the whole string inside quotes. The default value for the title is blank.

Examples of the use of the plot title variable are

Show Tit
SET title ’Space Shuttle Flight 4 Maneuver 3b’

4.7.7 Statistics variable.—The statistics variable contains sample statistics of all measured
variables from the time history data file. The statistics are defined whenever a measured time history
file is recad and may not be modified during use; they may be displayed only with the show command.

An cxample of the use of the statistics variable is

Sho Stats

14

4.7.8 Maneuver window variable.—A window is a time subset of the measured time history
file. Each window must be wholly contained within a maneuver (see section 3.1). When the equations
of motion are integrated, the integration is reinitialized at the start of each window. Only the time
points within the windows are used in the analysis. Integration of the equations of motion defines values
for all computed variables for all time points in all maneuvers, regardless of whether the time points are
inside or outside the windows. For time points outside the windows, the program uses a constant value
for each computed variable; the value depends on the variable type. For a state variable, the value is
zero; for a response variable, the value is the average value of the measured data for the variable. At
program startup, the default window or windows are identical to the maneuver or maneuvers,

The window variable specifies the window or windows used in the analysis. The window variable
specification has three elements: the window number, the maneuver number, and the time specification.
Whenever a window is referenced, all currently defined maneuvers and windows are displayed.

Examples of the use of the window variable are
Show windows

SET WINDOW TIME O - 10
set wind 2 man 2 time 0.5 7.5

4.8 Advanced Commands

4.8.1 Do command.—Use the do command to read a sequence of pEst commands from an
external command file and execute them. Upon successful completion of the command sequence,
control is returned to the command line.

Examples of the do command are
do initialize

Do Startup.X29

4.8.2 System command.—Use the system command to execute an operating system command
from within pEst. This command may not be implemented on some systems.

Examples of system commands are

SYSTEM FILES
sys help copy
sys Rename Current.init.f18 Current

5 ALGORITHMS

The pEst program gives you selective use of several different algorithms for various program functions.
The algorithms currently available are described in the following sections.

5.1 Minimization Algorithms

‘The pEst program has three algorithms available for iteratively minimizing the cost function: gradient
(or steepest descent), modified Newton-Raphson, and Davidon-Fletcher-Powell. The Newton-Raphson

18

algorithm is modified to eliminate an undesirable characteristic it has when used far from the mini-
mum of the cost function (or in any other case where the cost function is far from quadratic in the
parameter vector). It is not uncommon in such a case for a strict Newton-Raphson iteration to pro-
duce a higher cost value. To alleviate this problem, the Newton-Raphson algorithm is implemented
with an explicit line search; first, an initial parameter increment is computed using the Gauss-Newton
algorithm; then the parameter space is searched along the line defined by the parameter increment for
the minimizing cost value. The addition of the line search means that a Newton-Raphson iteration
is guaranteed to produce a cost value no larger than the cost before the iteration. Both the gradient
and Davidon-Fletcher-Powell algorithms use implicit line searches; an iteration using either algorithm
is also guaranteed to produce a nonincreasing cost value.

Any or all of the available minimization algorithms may be used on a single problem. The utility
of any algorithm depends on both the problem and the location in the parameter space with respect to
the minimum. It is commonly useful to start the minimization with one algorithm and to later switch
to a different algorithm to complete the solution. The different algorithms do not interact.

The gradient algorithm uses only first-gradient information and consequently performs best where
the cost function is very steep. It is useful for greatly reducing the cost when far from the minimum, as is
common when beginning work on the problem. However, its performance deteriorates as it approaches
the minimum, and the cost becomes flatter. In cases of high correlation between parameters, it may
even stall so completely as to appear to have converged. We do not recommend using the gradient
algorithm for the final iteration.

The Newton-Raphson algorithm uses second-gradient information in addition to first gradient
information and consequently performs best where the cost function is approximately quadratic. This
approximation is generally most accurate near the minimum of the cost function; the algorithm
has excellent convergence characteristics once it is close to the minimum. However, the Newton-
Raphson algorithm is sensitive to identifiability problems; the algorithm may fail if there are linear
dependencies among the parameters. The Newton-Raphson algorithm is the only algorithm that can
compute Cramér-Rao bounds, which are defined for all active parameters following a successful Newton-
Raphson iteration.

The Davidon-Fletcher-Powell algorithm, in some sense, combines the best features of the gradi-
ent and Newton-Raphson algorithms. This algorithm changes character from iteration to iteration.
Initially, it performs much like the gradient algorithm; the first iteration is identical to a gradient itera-
tion. As the iterations proceed, the algorithm gains information on the second gradient and approaches
the Newton-Raphson algorithm in character. Thus, this algorithm combines the initially rapid cost
reduction characteristics of the gradient algorithm with the excellent convergence characteristics of the
Newton-Raphson algorithm.

The iterative process is automatically terminated if a convergence criterion is met. The convergence
criterion is based on cost values for successive iterations; if the percentage change in the cost value
drops below a threshhold value (see section 4.7.4), convergence is declared, and the iterative process
is terminated.

5.2 Gradient Computation
The minimization algorithms require computation of first or second, or both, gradients of the cost

function at each iteration. The complete generality in the nonlinear equations of motion precludes
using analytical differentiation to compute the gradients; finite-difference algorithms are used. The

16

parameter increment used in computing the gradients is a fixed percentage of the parameter value (see
section 4.7.3).

Both single-sided and central difference algorithms are supported. Gradient computation using
the single-sided difference algorithm requires n, + 1 solutions of the equations of motion, where np 1s
the number of parameters; the central difference algorithm requires 2n, solutions of the equations of
motion. The gradient computation requires a large number of solutions of the equations of motion;
the computational time involved is typically the most significant percentage of the total time used in
an itcration. The single-sided difference algorithm is the faster of the two algorithms, but it is also
the less accurate. The increased accuracy of the central difference algorithm, however, is not really
consequential until close to convergence; we generally find it most efficient to use single-sided differences
for all but the last few iterations. The Gauss-Newton approximation (ref. 2) is used to compute the
second gradient, thus the computational burden of computing the second gradient in addition to the
first gradient is not significant.

5.3 Integrating the Equations of Motion

There are two algorithms available for integrating the equations of motion: forward Euler and fourth-
order Runge-Kutta integration. The forward Euler integration requires one evaluation of the state
derivative function f for each time point of the solution, while the Runge-Kutta algorithm requires
four such function evaluations per time point. Both algorithms require a single evaluation of the
response function g for each time point of the solution. Thus, the Euler algorithm is the faster of the
two. The Runge-Kutta algorithm, though slower, is more accurate and has a larger region of stability.

The nonlinear character of the functions f and g requires consideration of several issues that are
not relevant for linear equations of motion. The inherent possibility of singularities in f and g means
that catastrophic termination of the program (with subsequent loss of anything done up te that point)
is a real consideration. Extreme caution (maybe even paranoia, as some have suggested) is necessary to
anticipate and climinate these possibilities. Singularities, however, are just extreme and obvious cases
of ill conditioning; the more subtle cases can also generate equally catastrophic errors. In the estimation
process, it is not uncommon for an intermediate solution to diverge greatly from the final converged
solution. The large magnitudes of the state and observation variables in these intermediate solutions
can casily exceed the bounds of validity of intrinsic FORTRAN functions. We have implemented limit
checking on the state variables (see section 4.6.3) to preclude catastrophic computational errors.

6 STANDARD USER ROUTINES

The pEst program is supplied with a set of equations of motion to model a wide range of aircraft prob-
lems. The equations of motion are a full six-degree-of-freedom nonlinear set of differential equations.
We do not assume that the aircraft is symmetric. We do assume fixed aircraft geometry and constant
mass characteristics. No propulsion or rotating-mass effects are included. We assume a flat earth and
constant gravitational acceleration. We use English units throughout the equations.

6.1 Equations of Motion

The standard user routines define the equations of motion used by the program. The equations are
divided into the state equations and the response equations. All time history and parameteric variables

17

used in the equations are described in section 6.2. There is no explicit division of the equations
into longitudinal and lateral-directional subsets. The state equation for airspeed is not implemented
in plist.

The standard user routines define 8 state equations, 5 feedback equations, and 14 response equa-
tions. Only in rare instances, however, will you use the complete set of equations. In practice you will
probably interactively define a subset that is dependent on the maneuver being analyzed.

You can independently activate the state equations and response equations. Each state equation
is integrated only if it is active (see section 4.6.3); inactive state equations are not integrated and are
removed from the equations of motion. Each response equation is evaluated only if it is active (see
section 4.6.4); inactive response equations are removed from the equations.

Iach state variable on the right-hand side of the state and response equations can come from one of
three sources. First, the computed time history of the state variable can be used, if available. Second,
the corresponding measured response variable can be used, if available. Third, for some state variables,
a constant value can be used. The program flags and the status of the state variables determine the
source of each state variable on the right-hand side of the equations. Five flags specify using average
values of measurement variables (V, a, 8, 8, and ¢) in the equations. If a flag is turned on, the value
of the corresponding constant variable is used in the equations. If the flag is not turned on (or if there
is no corresponding flag for the state variable), the status of the state variable determines the source.
Il the state variable is active, the computed state time history is used. If the state variable is inactive,
the corresponding measurement variable is used.

Two additional flags specify the source of the extra time history variables (such as §) on the right-
hand side of the equations. If the flag for an extra variable is turned on, the value of the corresponding
constant variable is used; otherwise the measured time history of the extra variable is used.

6.1.1 State equations.—The predicted state variables # are obtained by integrating the state
cquations defined in the following equations.

. . gsR
= —t S Suh
" g —tanfB(pcosa + rsin a) mV cos B L
+ IR (cos 8 cos ¢ cos a + sin O sin &)
Vcosf '
Y . gsR
8 = psina-—-rcosa+ ———mVCy

+ QVE[COS B cos 0 sin ¢ — sin B(cos 8 cos ¢ sin & — sin § cos a)]
Lp— InyG — Ina? = @sbCeR + [qr(Iy — L) + (¢ — 7°) 1z + palz: — priz) /R
Iyg—I,¢ — Ipyp = @scCmR + [pr(L, — L) + (7”2 - P2)Irz + qrlzy — pqly.]/R
L = Ipep— Ieg = GsCrR + [pg(Io — L) + (p° — ¢*) Loy + prily: — qrlz)/R
0 = qcos¢—rsing
é = p+tanf(rcosd+ gsin ¢)

where
h is reference span,
c reference chord,
Cy, coeflicient of lift,

18

Co coefficient of rolling moment,

Cm coefficient of pitching moment,
Ch coefficient of yawing moment,
Cy coeflicient of lateral force,

1y, gravitational acceleration,

I Iy, I, are moments of inertia,

Toyy Iz, Iy, cross products of inertia,

m is mass,

P roll rate,

q pitch rate,

q dynamic pressure,

r yaw rate,

R conversion factor (57.2958),

8 reference area,

| %4 total velocity,

« angle of attack,

I5} angle of sideslip,

0 pitch attitude, and

¢ roll attitude.

6.1.2 Initial conditions.—The initial conditions of the state variables used in integrating the
cquations are defined as follows.

V) = Viuo-W+W
a(0) = (az — op)/ka+ oo
BO) = (Bz — Pv)/ks+ Bo
p(0) = P, —Po+p0

q(0) = ¢ -+
r0) = r,—Th+To
8(0) = 6, — 6y + 6o

¢(0) = ¢z° - ¢b + ¢0

where f(0) is the value of the state variable at the beginning of the integration, subscript b denotes
the measurement bias for the corresponding observation variable, subscript 0 denotes the increment to
the initial state value, and subscript zp denotes the measured value of the corresponding observation
variable of the initial point.

6.1.3 Total force and moment coefficients.— The total force and moment coefficients used
in the state and response equations are defined as follows.

C, = Cncosa—Cyusina
c

Ca = CAo+CAaa+mCAqQ+CA5e6e+CA6161+CA6262+CA6363
c

Cn = Cny+Cn,a+ ﬁC'qu + CNy be + Cny, 61+ Cn,, 62 + Cng, 63
b

2y = Cy, + C'yﬂﬂ + (Cypp + Cy,r) + CY&, 6a + CY6,6I + CY63 b3 + C'y‘,‘ b4

2VR

19

b

Ce = Co+ Crf+ (Cepp + Ce.7) + Coy, 8 + Cy 6 + Cls, 83 + Cyy, 64

2VR
Cm = Cmo+ Coma® + 377 Crmg8 + Cimg e + Comg, 61 + Cimg, 83 + Cimy B3
Ca' = Cuo+ CongB + s (Coy + Gy) + Cng b+ Crng 85+ Crngy B3+ Cog B4
where
Ca is coefficient of axial force,
Cn coefficient of normal force,
ba aileron deflection,
b elevator deflection,
4, rudder deflection,
& control surface 1 deflection,
0y control surface 2 deflection,
83 control surface 3 deflection,
b4 control surface 4 deflection,
CAO > CAQ y CAqa CAae ’
CA‘,l , CA62 , C’A&s are axial force parameters,
CNos CNa» CNgs O, »
C Ns,» C’M2 ,C Ne, normal force parameters,

Cyy, Cyy, Cy,, Cy,,
CYs,>Cy;,, Cyy, Oy, lateral force parameters,
C(o) C'(p ’ Clpa Clr,

Ces, 1 Ces,» Cts, s C,, rolling moment parameters,
C'moa Cma) Cmq1 Cmge)
Cn 5 Cm 5 Chr 5 pitching moment parameters, and

Cno) C‘nﬁ, Cnp, Cnr,
Cng,»Crg, »Cnyy Cry, yawing moment parameters.

All parameters are defined in section 6.2.

6.1.4 Response equations.—The computed response variables 7 are obtained by evaluating
the response equations defined in the following equations.

;i = V+W
- I q p
ry = /“0! [Ol + (za - xcg)v + (ya - ycg)v] + ap

B: = kp [ﬂ + (25 — ch)%} — (25— xcg)%}‘] + Bp

Pz = p+pm

G o= 4+

r; = r+4+T

b: = 6+6,

¢; = o+
tor = =L (s = 2eg)i + (Vor — Veg)] + —p (T, — 2eg) (@ +72) + 0
EF mg gR P c oz gRZ" o g b

20

Ay, = :l_sgCY + g‘l—R[_(may - zcg)f + (zay - ch)[)] - g%(yay - ycg)(p2 + "'2) + ay,
tn = EOn — —l(ten — i+ (Yo = eg)t] = (e = 2eg)(a” 49
p: = P+h
G = 4+
I
where
p is roll acceleration,
q pitch acceleration,
T yaw acceleration,
TayyYars Zaz are axial accelerometer position parameters,
Tay, Yays Zay lateral accelerometer position parameters,
Tays Yans 2an normal accelerometer position parameters,
Teg, Yog» Zcg aircraft center-of-gravity position constants,
Koy Tas Yor angle-of-attack measurement parameters,
kg, za, 23 angle-of-sideslip measurement parameters,

and the subscript Z denotes the computed response value.

6.1.5 State feedback equations.— The corrected state variables Z are obtained by evaluat-
ing the discrete feedback equations (see section 1.2) defined by the following standard user routines.
Feedback is implemented for only five of the state variables.

& = a+ (ga/ka)(ai - az)
B = B+ (98/kp)(B: - B:)
P = p+ gp(pi - pz)
g G+ 949z ~ ¢2)

~3>

= f'l'gr("'i - 7’2)

where gq, 98, 9p, 9q, and g, are feedback gain parameters, the superscript ~ denotes the predicted state
value, and the superscript " denotes the corrected state value.

6.2 System Variables and Names
The standard user routines define the names of all system variables: parameters, constants, states,

controls, responses, extras, and flags. In program use, all system variables are accessed by their
given names.

6.2.1 Parameters.—The standard user routines define 97 parameters. Parameter subsets are
defined below. Each parameter is individually documented in the parameters help file.

6.2.1.1 Stability and control derivatives: Any parameter whose name starts with the letter c is
a stability or control derivative. There are three classes of stability and control derivatives: aerody-

21

namic biases, control derivatives, and stability derivatives. Each derivative is nondimensionalized; the
details of the nondimensionalization depend on the parameter. All aerodynamic biases are completely
normalized; they are dimensionless. All rotational rate derivatives are expressed in reciprocal radians.
All @, 3, and control derivatives are expressed in reciprocal degrees. The reason for the apparent
inconsistency in nondimensionalization is historical and follows existing conventions.

'T'he stability and control derivatives can be divided into longitudinal and lateral-directional deriva-
tives, though there is some overlap in the control derivatives. Tables 1 and 2 tabulate the longitudinal
and the lateral-directional stability and control derivatives, respectively. (In the tables and text, math-
ematical variables in parentheses follow the corresponding program variable names.)

TABLE 1 — LONGITUDINAL STABILITY
AND CONTROL DERIVATIVES

Force or moment

Axial Normal Pitching

State or control force force moment
Aerodynamic bias cal (Cg,) cNormO (Cpn,) <m0 (Cp,)
Angle of attack caa (Ca,) cNorma (Cn,) cma (Cn,)
Pitch rate caq (Ca,) cNormq (Cy,) cmq (Cp,)

Elevator deflection
d1 deflection
d2 deflection
d3 deflection

cade (Cay,)
cadl (Cay,)
cad?2 (CA.52)
cad3 (Ca4,,)

cNormde (Cn,,)
cNormd1 (C Ns,)
cNormd?2 (Ch,,)
cNormd3 (Chy,)

cmde (Crmy,)
cmd1 (Cma,)
cmd2 (Cp,)
cmd3 (Ci,,)

TABLE 2 — LATERAL-DIRECTIONAL STABILITY
AND CONTROL DERIVATIVES

Force or moment

Lateral Rolling Yawing

State or control force moment moment
Aerodynamic bias ¢y0 (Cy,) cl0 (Cy,) cn0 (Cy,)
Angle of sideslip cyb (Cy,) clb (Cpy) cnb (Cry)
Roll rate cyp (Cy,) clp (Cy,) cnp (Cy,)
Yaw rate cyr (Cy,) clr (Cy,) cor (Ch,)

Aileron deflection
Rudder deflection

cyda (Cy,,) clda (Cp,,) cnda (Cy,,)

d3 deflection
d4 deflection

cydr (C’yﬁ)
cyd3 (Cys,)
cyd4 (Cy,,)

cldr (C,,)
cld3 (Clos)
cld4 (Cy,,)

cndr (Chy,)
cnd3 (Cr,,)
cnd4 (Ch,,)

6.2.1.2 State initial conditions: Each state variable has a corresponding state initial condition
increment parameter. The initial condition increment is added to each measured initial condition. The
dimensions of cach initial condition parameter are the same as those of its corresponding state variable.
State initial condition parameters are v0 (Vp), alpha0 (aq), q0 (go), thetaO (8), betad (Bo), p0 (po), 0
(o), and phi0 (¢o).

22

6.2.1.3 Instrumentation parameters: Numerous parameters characterize instrumentation installa-
tion and calibration. Each response variable has a corresponding response bias parameter. The bias
value is added to the computed response variable value at each time point. The dimensions of each
response bias parameter are the same as the dimensions of the corresponding response variable. Re-
sponse bias parameters are vBias (V4), alphaBias (as), qBias (gb), thetaBias (6y), anBias (ay,), axBias
(az,), qdotBias (¢v), betaBias (0p), pBias (pp), rBias (rp), phiBias (¢y), ayBias (ay,), pdotBias (),
and rdotBias (7).

Scveral response-measuring instruments have parameters describing their location in the aircraft.
Each instrument-position parameter specifies the location of a response-measuring instrument aft of,
to the right of, or above the aircraft reference point. Instrument-position parameters correct computed
response values for instruments not located at the aircraft center of gravity. In operation, the program
determines the distance from the instrument to the center of gravity by subtracting the instrument
position from the center-of-gravity position (see section 6.2.2.1). The dimensions of all instrument-
position parameters are feet. Table 3 gives the instrument-position parameter names.

TABLE 3 — INSTRUMENT POSITION PARAMETERS

Aircraft axis

Response variable X Y Z
Velocity xv(zv) yv(yv) zv (zv)
Angle of attack xa (24) ya(¥Yo) za (zq)
Angle of sideslip xb (zp) yb (ys) zb (23)
Axial acceleration Xax (Zs,) Yax (Ya,) 2ax (z4,)

Lateral acceleration xay (z.,) yay (Yay) 22y (2a,)
Normal acceleration xan (z,,) yan (y,,) zan (z,,)

‘T'wo parameters define the flow amplification factors for the aircraft flow angle sensors. The upwash
factor for the angle-of-attack sensor is ka (ks), and the sidewash factor for the angle-of-sideslip sensor
is kb (k). Both parameters are dimensionless.

6.2.1.4 Feedback gains: Five parameters define feedback gains for five of the state equations. Valid
values for feedback gains are between 0 and 1; a value of 0 implies no feedback. While the feedback gains
arc parameters and can therefore be estimated, such use is experimental. Feedback gain parameters

arc gAlpha (g4), gBeta (gg), gP (gp), 8Q (g9,), and gR (g,).

6.2.2 Constants.—The standard user routines define several constants. The use and dimensions
of cach constant are defined as follows.

6.2.2.1 Aircraft physical characteristics: Constants defining the mass characteristics of the aircraft
are mass (m), ix (1), iy (Iy), iz (I2), ixy (Ipy), ixz (Iz,), and iyz (I,,). The mass is in slugs and all
incrtias in slug-feet squared. Constants defining the reference dimensions of the aircraft are area (s),
span (b), and chord (c); the area is in feet squared and the span and chord are in feet. Constants

23

defining the location of the aircraft center of gravity are xcg (Teg) YC& (Yeg), and zcg (zcg); they are
measured in feet aft of, to the right of, and above the aircraft reference point, respectively.

6.2.2.2 Time history variable averages: Several constants specify average values of measured time
history variables. The avg.v, avg.alpha, avgbeta, avg.theta, and avg_phi constants contain average
values for the corresponding response variables. The avg-gbar constant contains the average value of
the dynamic pressure. Whenever a measured time history file is read (see section 4.2.1), the average
value of each time history variable is computed, and values are assigned to the corresponding constants.
Of course, at any point in the program, you can modify the value of a constant (see section 4.6.2).
The equations of motion use the value of the constant variable containing the time history average of
a Tesponse variable if its corresponding flag is turned on (see section 6.2.7).

6.2.3 States.—The standard user routines define eight state variables. All state variables are
used internally in the program in English units. The wind-relative velocity is defined in spherical
coordinates by three states: airspeed, angle of attack, and angle of sideslip. Airspeed is measured in
foet per second, and its state name is v (V). Angles of attack and sideslip are both measured in degrees
and are named alpha (a) and beta (), respectively. The aircraft rotational velocities are defined in
the aircraft body axes and are all measured in degrees per second. The roll, pitch, and yaw rate states
are named p (p), q (¢), and t (r), respectively. The aircraft attitude is defined by the the aircraft Euler
angles, measured in degrees. The pitch and bank angles are named theta (6) and phi (¢), respectively.
Heading angle is not used in the aircraft equations of motion.

6.2.4 Controls.—The standard user routines define seven control variables. All control variables
are measured in degrees. The three conventional aircraft control surface deflections, elevator, aileron,
and rudder deflection, are named de (&), da (8,), and dr (6;). The program defines four additional
controls, d1 (6;), d2 (62), d3 (63), and d4 (64).

6.2.5 Responses.—The standard user routines define 14 response variables. Each of the eight
state variables (see section 6.2.3) has a corresponding response variable; the name and dimensions of
each response variable are identical. Six additional response variables have no corresponding states.
"The aircraft rotational accelerations are defined in the aircraft body axes and are measured in degrees
per second squared. The roll, pitch, and yaw accelerations are named pdot (p), qdot (§), and rdot (7),
respectively. The aircraft linear accelerations are defined in the aircraft body axes and are measured
in g. The axial, lateral, and longitudinal accelerations are named ax (az), ay (ay), and an (an),
respectively.

6.2.6 Extras.—The standard user routines define three extra signals: Mach number, dynamic
pressure, and altitude, named mach (M), gbar (§), and alt (h), respectively.

68.2.7 Flags.—The standard user routines define seven flag variables. The flags select alternative
forms of the equations or sources of data. Each flag specifies using the average value of a measured
time history variable in the equations of motions in place of a time-varying quantity. This option is
particularly useful when you do not have a measurement time history for a particular variable. In
such a case, you can input an average value using the appropriate constant (see section 6.2.2) and then

24

activate the flag to use the average value in the equations. The flags are named use_avg.v, use_avg.beta,
use_avg_theta, use.avg phi, use_avg.mach, and use.avg gbar.

National Aeronautics and Space Administration
Ames Research Center

Dryden Flight Research Facility

Edwards, California, September 9, 1986

25

APPENDIX A—PROGRAM STATUS FILE FORMAT

The program status file is a FORTRAN formatted file that stores the status of every program variable.
Each record on the status file corresponds to an individual program variable or option; the records are
grouped together into common record types. When the file is written by the program, a complete file
is written; all records defined for the file are written. If you create the file outside the pEst program,
it is not necessary to fill in all fields on the file. At startup, the program assigns a default value to
cach program variable; the value is retained unless it is redefined by reading a corresponding record on
the status file. Except for the first record, which specifies the file format, the order of the records is
immaterial. Any record can be repeated; if repeated, the last record read overrides all previous records.
All fields are case insensitive; upper and lower case can be mixed.

Fach record type is defined by its key word; the key word is the first field of each record and is
left-justified in the first eight columns of the record. Each key word can be followed by several fields;
the content and format of the fields, of course, depend on the record type. However, all fields of a
common type have identical format, independent of the record type. There are no spaces between fields.
Any field specifying a system or program variable name is 16 characters wide; the name is left-justified
in the field. Any floating-point field is also 16 characters wide and is read with a FORTRAN g16.10
format. Any logical field is 2 characters wide, and contains either a t or an f, right-justified. All other
ficlds are record dependent and are described in the individual sections that follow. All key words and
litcral phrases used in the status file are italicized in the following sections to distinguish them from
other text.

A.1 Version Record

The file has a single version record. The version record specifies the format used when reading the
file, hence the version record must be the first record on the file. The key word for the version record
is version. Four fields follow: The first is a character string with the phrase pest-current left-justified
in a ficld of 16 characters. The program recognizes the file by this phrase, and it is required. The
sccond field specifies the version number of the current file as a character string, left-justified in a field
8 characters wide. The current value is 2.1. The third and fourth fields specify the date and time when
the file is written by the program; these fields are not read by the program.

An example of a version record is

version pest-current 2.1 31-Mar-86 15:33:30

A.2 Title Record

T'he file typically has a single title record. The key word for the title record is title. A character field
40 characters wide specifying the title follows the key word.

An example of a title record is

title F18 FLIGHT 11 LONG MAN 3

26

A.3 Parameter Record

The file can have several parameter records; typically there is one for each parameter defined in the
program. The key word for a parameter record is param. Five fields follow: The first is the parameter
name. The second and third are floating-point fields specifying the predicted and current values of the
parameter, respectively. The fourth is a logical field specifying the estimation status of the parameter.
The last is a floating-point field specifying the Cramér-Rao bound for the parameter.

IExamples of parameter records are

param cNormde .7T798399770E-02 .8341009928E-02 T .0001045977
param clp -.3680106990 -.3680106990 F .0000000000

A.4 Constant Record

The file can have several constant records; typically there is one for each constant defined in the
program. The key word for a constant record is const. Two fields follow: The first is the constant
name. The second is a floating-point field specifying the value of the constant.

Examples of constant records are

const avg_alpha 8.165277248
const ixz 1870.199950
const zcg 5.317500110

A.5 Flag Record

The file can have several flag records; typically there is one for each flag defined in the program. The
key word for a flag record is flag. Two fields follow: The first is the flag name. The second is the value
of the flag, in a logical field.

An example of a flag record is

flag use_avg_alpha F

A .6 State Record

The file can have several state records; typically there is one for each state variable defined in the
program. The key word for a state record is state. Three fields follow: The first is the state name. The
second is a logical field specifying the status of the state equation. The third is a floating-point field
specifying the integration limit for the state.

Examples of state records are

state alpha t 100000.0000
state p F 10000.00000

27

A.7 Response Record

The file can have several response records; typically there is one for each response variable defined
in the program. The key word for a response record is output. Four fields follow: The first is the
response name. The second is a floating-point field specifying the average value of the measured
response variable. The third is a logical field specifying the status of the response equation. The last
is a floating-point field specifying the response weighting in the cost function.

Examples of response records are

output alpha 8.165277248 T 500.0000000
output phi -.3456887850 £ 10.00000000

A.8 Control Record

The file can have several control records; typically there is one for each control variable defined in the
program. The key word for a control record is input. Two fields follow: The first is the control name.
The second is a floating-point field specifying the average value of the measured control variable.

Examples of control records are

input de ~2.275935836
input d3 .0000000000

A.9 Extra Record

The file can have several extra records; typically there is one for each extra variable defined in the
program. The key word for a extra record is extra. Two fields follow: The first is the name of
the extra signal. The second is a floating-point field specifying the average value of the measured
extra variable.

An example of an extra record is

extra gbar 112.4635873

A.10 Maneuver and Window Records

The file can have several maneuver or window records, or both; typically there is one for each maneuver
or window defined in the program. The formats of the two records are identical; the only difference
is the key word. The key word for a maneuver record is maneuver, while that for window record
is window. Two fields specifying the start and end times follow the key word. The format for each
time is identical. There are two blank spaces, followed by a two-digit hours specifier, a period, a
two-digit minutes specifier, a period, a two-digit seconds specifier, a period, and a three-digit milli-
seconds specifier.

Examples of maneuver and window records are

maneuver 10.42.18.508 10.42.25.487
window 10.42.18.508 10.42.25.487

28

A.11 Option Records

The file can have several option records; typically there is one for each program option defined. The
key word for an option record is option. Two fields follow: The first is the name of the option. There
are six program options, each corresponding to a program variable. The second field is the value of the
program variable, so the format depends on the variable. For the integMeth, minMeth, and gradMeth
variables, the second field is a character string, left-justified in a field 16 characters wide. For the
gradDelt and bound variables, the second field is a floating-point field. For the msgLevel variable, the
sccond field is is an integer value right-justified in a field 5 characters wide.

FExamples of option records are

option integ runge-kutta
option min newton-raphson
option gradMeth single-sided
option gradDelt .1000000000E-06
option bound .1000000000E-03
option msgLevel 50

29

APPENDIX B—HELP FILES

The online help files used by pEst are listed in the following sections as they appear in program use.
The help files detail the exact syntax of each command. The help files are alphabetically ordered.

B.1 Abort

abort [cmd] -- exit pEst immediately

USAGE
abort

DESCRIPTION
Exits pEst without saving current program status or writing
computed time history.

EXAMPLES
abort

SEE ALSO
quit, save, write

KEYWORDS
abort command,
abort/exit pEst

AUTHOR James Murray - NASA Dryden
VERSION 2.1
DATE 11/19/85

B.2 Bound

bound [var] -- convergence bound

USAGE
show bound
set bound <convergence bound>

DESCRIPTION
Bound is the value used in the convergence test of the
minimization algorithm. If the percentage change in the cost
function between two successive iterations is less than this
number, then convergence is declared and the program stops
iterating.

Convergence tests may become more complicated in future

30

versions, possibly rendering this variable obsolete.
The default is bound=.0001

EXAMPLES
show bound
set bound 0.00001

SEE ALSO
show, set

KEYWORDS
bound variable,
convergence bound/criterion

AUTHOR James Murray
VERSION 2.1
DATE 11/21/85

B.3 Constant
const [cmd] -- display or set constants

USAGE
const <const_list> <value>

PARAMETERS
const_list
List of const names, separated by commas or blanks. May
alternatively be ’all’ (for all constants). If not
specified, it defaults to all constants.

value
Floating point value for all referenced constants. If this
value is present, all referenced constants will be set to
the specified value. If value is omitted, the constant
values will remain unchanged.

DESCRIPTION
Displays or sets value of selected constants.

EXAMPLES
const area 200.0
const all

SEE ALSO
param, flag [cmd]

31

constants [var]

KEYWORDS
const command,
set/change/list/show/display constants

AUTHOR James Murray - NASA Dryden
VERSION 2.1
DATE 3/11/86

B.4 Constants
constants [var] -- user~defined constants

DESCRIPTION
The following are the names and brief descriptions of the user
routine constants currently defined in pEst. C.G positions
are positive aft, above, and right of the reference point.

NAME DESCRIPTION

avg_gbar average gbar, psf

avg_mach average mach

avg_v average velocity, ft/sec

avg_alpha average alpha, deg

avg_theta average pitch attitude, deg

avg_beta average beta , deg

avg_phi average roll attitude , deg

mass mass, slugs

ix ix, slug-ft**2

iy iy, slug-ft*x2

iz iz, slug-ft¥*2

ixy ixy, slug-ft**2

ixz ixz, slug-ft*x*2

iyz iyz, slug-ft**2

area reference area, ftk*2

span reference span, ft

chord reference chord, ft

Xcg x-coordinate of cg, ft

ycg y-coordinate of cg, ft

zcg z-coordinate of cg, ft
SEE ALSO

const, parameters, flags, states, responses, controls, extras

KEYWORDS

32

constant names/descriptions

AUTHOR James Murray
VERSION 2.1
DATE 11/22/85

B.5 Controls

controls [var] -- control signals

DESCRIPTION
The following are the names and brief descriptions of the
control signals currently defined in pEst.

NAME DESCRIPTION

de elevator deflection, deg

d1 deflection of control surface 1, deg

d2 deflection of control surface 2, deg

da aileron deflection, deg

dr rudder deflection, deg

d3 deflection of control surface 3, deg

d4 deflection of control surface 4, deg
SEE ALSO

parameters, constants, flags, states, responses, extras

KEYWORDS
control/input signals/names/descriptions

AUTHOR James Murray
VERSION 2.1
DATE 11/22/85

B.6 Extras

extras [var] -- extra signals

DESCRIPTION
The following are the names and brief descriptions of the
extra signals currently defined in pEst.

NAME DESCRIPTION
gbar dynamic pressure, psf
mach mach number

33

alt altitude, ft

SEE ALSO
parameters, constants, flags, states, responses, controls

KEYWORDS
extra signals/names/descriptions

AUTHOR James Murray
VERSION 2.1
DATE 11/22/85

B.7 Flag
flag [cmd] -- display or set user-defined flags

USAGE
flag <flag_list> +active

PARAMETERS
flag_list
List of flag names, separated by commas or blanks. May
alternatively be ’all’ (for all flags), ’active’ (for the
active flags), or one of several synonyms for active. If
not specified, it defaults to all active flags.

+tactive (+on,+yes,+vary,+enable,+t,-inact,~deact,-disable,
-no,-f)
Switch to set the value of the referenced flags to active or
inactive (or on/off, etc.) If this switch is present, all
referenced flags will be set to the specified value. If the
switch is omitted, the flag values remain unchanged.

DESCRIPTION
Displays or sets status of flags.

The flag values are boolean (true/false, etc.) There is no
distinction between +on, +true, +active, etc., except that
some of these synonyms may sound more sensible than others for
a gpecific flag. The interpretation of the flag values is
solely a function of the user routines. The core pEst program
does nothing with the flags except handle the mechanics of
setting, displaying and storing them.

EXAMPLES

flag use_avg_qBar,use_avg_mach +no
flag all

34

SEE ALSO
param, const [cmd]
flags [var]

KEYWORDS
flag command,
set/change/list/show/display flags

AUTHOR James Murray - NASA Dryden
VERSION 2.1
DATE 3/18/86

B.8 Flags
flags [var] -- user-defined flags
DESCRIPTION

The following are the names and brief descriptions of the user
routine flags currently defined in pEst.

NAME DESCRIPTION

use_avg_qbar use average gbar in if true
use_avg_mach use average mach if true
use_avg_v use average velocity if true
use_avg_alpha use average alpha if true
use_avg_theta use average pitch attitude if true
use_avg_beta use average beta if true
use_avg_phi use average roll attitude if true

SEE ALS0
flag, parameters, constants, states, responses, controls,
extras, state

KEYWORDS
flag names/descriptions

AUTHOR James Murray
VERSION 2.1
DATE 11/22/85

B.9 GradDelta

gradDelta [var] -- parameter increment to use for computing
gradients

USAGE
show gradDelta
set gradDelta <value>

DESCRIPTION
GradDelta is the relative step size used for computing finite
difference gradients. The step size used for each unknown
parameter is gradDelta times the current estimate of the
parameter.

To avoid problems near zero, there is a fixed minimum
parameter value in the step size computation. If a parameter
estimate is smaller than this limit (currently .000001i), the
step size for that parameter is gradDelta times the limit.

The default is gradDelta=.0000001

EXAMPLES
show gradDelta
set gradDelta 0.00001

SEE ALSO
show, set, gradMeth

KEYWORDS
gradDelta variable,
delta/increment/(step size) for computing gradients,
sensitivity matrix

AUTHOR James Murray

VERSIDN 2.1
DATE 11/21/85

B.10 GradMeth

gradMeth [var] -- method of computing gradients
USAGE

show gradMeth
set gradMeth <method>

36

DESCRIPTION
GradMeth is the method used by the program for computing
gradients. Two options are available. Both are finite
difference methods. Pest has no provision for analytical
differentiation.

If gradMeth is set to ’1’ or ’s[ingle-sided]’, a forward
difference method will be used. This is the fastest method,
requiring only n+l1 integrations to compute an n-dimensional
gradient. It sacrifices some accuracy, however.

If gradMeth is set to ’2’ or ’d[ouble-sided]’, a central
difference method will be used. This is the most accurate

method implemented, but requires 2n integrations to compute an

n-dimensional gradient. Since the integrations in the
gradient computation dominate the computational time of pEst,
the central difference method takes about twice the time of
the forward difference method.

For most efficient use of computer time (when it is worth the

trouble), you might want to use forward difference computation
most of the time, switching to central difference for the last

few critical iterationms.
The default is gradMeth=’single-sided’

EXAMPLES
show gradMeth
set gradMeth single

SEE ALSO
show, set, gradDelta

KEYWORDS
gradMeth variable,
forward/central difference method,
gradient/sensitivity computation

AUTHOR James Murray

VERSION 2.1
DATE 11/21/85

13.11 IntegMeth

integMeth [var] -- integration method

USAGE

37

show integMeth
set integMeth <method>

DESCRIPTION
IntegMeth is the method used by the program for integrating
the equations of motion. There are currently two valid
values.

If integMeth is E[uler], a first order Euler method is used.
This simple method uses only 1 state derivative evaluation and
1 response evaluation per time point. Although fast, this
method is quite innaccurate. It is recommended only for rough
approximations when computer time is of critical importance.

If integMeth is R[unge-Kutta] a 4th order Runge-Kutta method
is used. This method requires 4 state derivative evaluations
and 1 response evaluation per time point. Although moderately
expensive, its accuracy is good and it is recommended for most
applications.

The default is integMeth=’Runge-Kutta’

EXAMPLES
show integMeth
set integMeth runge

SEE ALSO
show, set

KEYWORDS
integMeth variable,
Euler integration method/algorithm,
Runge-Kutta/(Runge Kutta)/RK integration method/algorithm

AUTHOR James Murray
VERSION 2.1
DATE 11/21/85

B.12 Iterate

iterate [cmd] -- perform parameter estimation iterations

USAGE
iterate [<niter>] [<min_meth>]

PARAMETERS
niter

38

Maximum number of iterations to do; if omitted or zero, the
equations of motion will only be integrated and the cost
function evaluated; no parameter update will be performed.

min_meth
Optional specification of the minimization method to be
used. If this parameter is included, the minMeth variable
is set accordingly and the specified method is used. If
this parameter is not specified the current value of the
minMeth variable is used. The minMeth variable can also be
set with the set command. The 3 currently valid values are
nlewton-raphson] glradient] and d{avidon-fletcher-powell].
The initial default for min_meth is newton-raphson. See the
minMeth helpFile for details.

DESCRIPTION
The iterate command initiates the parameter estimation.
Anything beginning with ’it’ will be accepted as an
abbreviation.

EXAMPLES
iterate
iter 3 grad

SEE ALSO
set, show, minMeth, integMeth, gradMeth, bound, msglevel,
param, state, response, flag

KEYWORDS
iterate/iter/it command,
set minMeth/(minimization method) variable,
estimate parameters, integrate equations, minimize cost
function

AUTHOR James Murray - NASA Dryden

VERSION 2.1
DATE 11/21/85

B.13 MinMeth
minMeth [var] ~-- cost function minimization method
USAGE

show minMeth

set minMeth <minimization method>

DESCRIPTION

MinMeth is the algorithm used by the program for minimizing
the cost function. There are currently three valid values:
nlewton-raphson], glradient], and d[avidon-fletcher-powell].

Newton-Raphson is recommended for most situations. It is
actually implemented as a Gauss-Newton algorithm. Cramer-Rao
bounds are available only when Newton-Raphson is used. The
algorithm is modified by the addition of a line search in the
Gauss-Newton direction. With this line search, the cost
function is guaranteed never to increase from one iteration to
the next; it may not decrease much (or at all), but it will
never increase. Any violations of this principle should be
reported as program bugs.

Gradient (also known as steepest descent) is in general less
efficient than Newton-Raphson. The gradient algorithm is the
most conservative of those implemented in that it has the
least chance of failing. This is because the gradient method
involves no matrix inversions. Note, however, that matrix
inversion difficulties are usually a sign of more serious
intrinsic identifiability problems and should not be lightly
ignored. Like the pEst implementation of Gauss-Newton, the
gradient method should never give a cost increase from one
iteration to the next. Convergence of the gradient method is
often extremely slow.

The implementation of the Davidon-Fletcher-Powell algorithm in
the pEst program is still somewhat experimental. The
algorithm is generally considered to be quite "powerful."
However, we have not yet spent much time investigating its
performance in the pEst environment.

The default is minMeth=’newton-raphson’

EXAMPLES
show min_meth
set min_meth newton

SEE ALSO
show, set, iterate

KEYWORDS
minMeth variable,
Newton-Raphson/Newton/(Gauss-Newton)/Gauss method/algorithm,
gradient/(steepest descent) method/algorithm,
Davidon-Fletcher-Powell/dfp method algorithm,
cost function minimization/min/optimization method/algorithm

10

AUTHOR James Murray
VERSION 2.1
DATE 11/21/85

B.14 MsgLevel

msglLevel [var] -- amount of screen output

USAGE
show msglevel
set msglevel <message_level>

DESCRIPTION
MsgLevel is the amount of screen output displayed. The
following describes the output added at each value of
msglevel. Higher values of msglevel also include all of the
output for the lower levels. The numeric values assigned
leave lots of room for future finer control.

LEVEL DESCRIPTION

(levels 1-9 control output that occurs only on error
termination)

5 Show error specifics, detailing where errors occur.
(1evels 10-49 control output that occurs once per iteration)
10 Show cost function value each iteration.
15 Show cost per response signal each iteration.
20 Show estimated parameter values each iteration.
40 Summarize each iteration.

(levels 50-99 mostly control output that can be many times
per iteration)

50 Summarize each line search.

52 Summarize each stage of line search.

55 Show all integration failures, recoverable or not. At
lower message levels, some integration failures are

silently recovered, for instance by trying smaller step
sizes.

41

57

60

62

65

70

75

80

Show correlation matrix every newton-raphson iteration.

Detail each cost evaluation in line searches. This
tracks the convergence of the line search algorithm.
Mostly used in development of line search algorithms.

Detail integration failures. Show details of why
integration was terminated.

Show second gradient matrices every newton-raphson
iteration. Show approximate inverse second gradient
matrices every dfp iterationm.

Show all gradient vectors.

Show cost function value whenever it is evaluated for
any purpose.

Show the cost per response signal whenever the cost is
evaluated.

(levels 100-7? control output that occurs every time point of
integration)
(Note that the volume of output can be extremely large)

100

Show the state vector every time point. (Unimplemented)

The default is msgLevel=50

EXAMPLES

show msgLevel
set msglevel 60

SEE ALSO

set, show

KEYWORDS

msglevel variable,

msg,

level/amount of output messages

AUTHOR James Murray
VERSION 2.1
DATE 11/22/85

B.15 Parameter

param [cmd] -- display or set parameter values or status
USAGE
param <param_list> <value>
+active +reset
+predicted +crBound +delta
PARAMETERS

param_list
List of parameter names, separated by commas or blanks. May
alternatively be ’'all’ (for all parameters), ’active’ (for
the active parameters), or one of several synonyms for
active. If not specified, it defaults to all active
parameters. In this context, an ’active’ parameter is one
being allowed to vary in the estimation (varying is one of
the acceptable synonyms).

value
Floating point value for all referenced parameters. If this
value is present, all referenced parameters will be set to
the specified value. If value is omitted, the parameter
values will remain unchanged.

+active (+on,+yes,+vary,+enable,+t,—inact,-deact,—disable,
-no,-f)
Switch to activate or deactivate estimation of all
referenced parameters. If +active is set, the referenced
parameters will be estimated. If -active is set, they will
not be estimated. If neither is set, the status of the
parameters will remain unchanged.

+reset
If +reset is specified, all parameters in the param_list
will be reset to their predicted values. Note that it does
not make much sense to specify both a value and +reset; if
you do so, the +reset specification will override without
comment. The switch may be abbreviated to +r. The default

1s -reset.

+predicted
If the +predicted switch is specified, the predicted values
of the parameters will be included in the display resulting
from this command. The switch may be abbreviated to +pr.
The default is -predicted.

+crBound

43

If the +crBound switch is specified, the Cramer-Rao bounds
of the parameters will be included in the display resulting
from this command. Anything beginning with +cr or +b is
accepted as a synonym. The default is -crBound.

+delta
If the +delta switch is specified, the the parameter value
changes in the previous iteration will be included in the
display. Anything begining with +d will be accepted as a
synonym (unless the second letter is i, which could cause
confusion with +disable).

DESCRIPTION
Displays or sets value and estimation status of selected
parameters. Any command starting with ’par’ will be accepted
as a synonym.

EXAMPLES
param cma,cmde,cmq +fix
param cnp -0.25
parm vary
par all

SEE ALSO
const, flag [cmd]
parameters [var]

KEYWORDS
param command,
set/change/list/show/display parameter/param/parm values/
status

AUTHOR James Murray - NASA Dryden
VERSION 2.1
DATE 3/18/86

B.16 Parameters
parameters [var] -- estimated parameters

DESCRIPTION
The following are the names and brief descriptions of the
estimated parameters currently defined in pEst. Instrument
positions are positive aft, above, and right of the reference
point.

44

NAME

cNormO
cNorma
cNormq
cNormde

cNormdi
cNormd2
cNormd3
cmO

cma

cmq
cmde

cmdl
cmd?2
cmd3
ca0
caa
caq
cade

cadl
cad?2
cad3
vO

alpha0
q0

thetal

vBias
alphaBias
gBias
thetaBias
anBias
axBias
qdotBias

ka
xa
ya
za
xan
yan
zan

DESCRIPTION

normal force
normal force
normal force
normal force
deg
normal force
normal force
normal force

aer
due
due
due

due
due
due

pitching moment
pitching moment
pitching moment
pitching moment

per deg

pitching moment
pitching moment
pitching moment

axial force
axial force
axial force
axial force
deg
axial force
axial force
axial force

aero
due
due
due

due
due
due

odynamic bias

to alpha, per deg

to pitch rate, per rad

to elevator deflection, per

to dl deflection, per deg
to d2 deflection, per deg
to d3 deflection, per deg
aerodynamic bias

due to alpha, per deg

due to pitch rate, per rad
due to elevator deflection,

due to d1 deflection, per deg
due to d2 deflection, per deg
due to d3 deflection, per deg
dynamic bias

to alpha, per deg

to pitch rate, per rad

to elevator deflection, per

to dl1 deflection, per deg
to d2 defection, per deg
to d3 deflection, per deg

increment to velocity initial condition,

ft/sec

increment to alpha initial condition, deg
increment to pitch rate initial condition,

deg/sec

increment to pitch attitude initial condition,

deg
measurement
measurement
measurement
measurement
measurement
measurement
measurement

deg/sec**2

bias
bias
bias
bias
bias
bias
bias

on velocity, ft/sec

on alpha, deg

on pitch rate, deg/sec

on pitch attitude, deg

on normal acceleration, g
on axial acceleration, g
on pitch acceleration,

upwash factor for alpha sensor

x-coordinate
y-coordinate
z~-coordinate
x-coordinate
y-coordinatse
z-coordinate

of
of
of
of
of
of

alpha sensor, ft
alpha sensor, ft
alpha sensor, ft
normal accelerometer, ft
normal accelerometer, ft
normal accelerometer, ft

45

xax x-coordinate of axial accelerometer, ft

yax z-coordinate of axial accelerometer, ft

zax z-coordinate of axial accelerometer, ft

xv x-coordinate of velocity sensor, ft

yv y-coordinate of velocity sensor, ft

zv z-coordinate of velocity sensor, ft

cy0 side force aerodynamic bias

cyb side force due to beta, per deg

cyp side force due to roll rate, per rad

cyr side force due to yaw rate, per rad

cyda side force due to aileron deflection, per deg

cydr side force due to rudder deflection, per deg

cyd3 side force due to d3 deflection, per deg

cyd4 side force due to d4 deflection, per deg

clo rolling moment aerodynamic bias

clb rolling moment due to beta, per deg

clp rolling moment due to roll rate, per rad

clr rolling moment due to yaw rate, per rad

clda rolling moment due to aileron deflection, per
deg

cldr rolling moment due to rudder deflection, per
deg

cld3 rolling moment due to d3 deflection, per deg

cld4 rolling moment due to d4 deflection, per deg

cn0 yawing moment aerodynamic bias

cnb yawing moment due to beta , per deg

cnp yawing moment due to roll rate, per rad

cnr yawing moment due to yaw rate, per rad

cnda yawing moment due to aileron deflection, per
deg

cndr yawing moment due to rudder deflection, per
deg

cnd3 yawing moment due to d3 deflection, per deg

cnd4 yawing moment due to d4 deflection, per deg

betal increment to beta initial condition, deg

pO increment to roll rate initial condition,
deg/sec

r0 increment to yaw rate initial condition,
deg/sec

phio increment to bank angle initial condition, deg

betaBias measurement bias on beta, deg

pBias measurement bias on roll rate, deg/sec

rBias measurement bias on yaw rate, deg/sec

phiBias measurement bias on bank angle, deg

ayBias measurement bias on lateral accelerometer, g

pdotBias measurement bias on roll acceleration,
deg/sec**2

rdotBias measurement bias on yaw acceleration,

16

deg/sec**2

kb sidewash factor for beta sensor
xb x-coordinate of beta sensor, ft
yb y-coordinate of beta sensor, ft
zb z-coordinate of beta sensor, ft
xay x-coordinate of lateral accelerometer, ft
yay y-coordinate of lateral accelerometer, ft
zay z-coordinate of lateral accelerometer, ft
ghAlpha feedback gain for alpha state
gQ feedback gain for q state
gBeta feedback gain for beta state
gP feedback gain for p state
gR feedback gain for r state
SEE ALSO

param, constants, flags, states, responses, controls, extras

KEYWORDS
parameter/param names/descriptions

AUTHOR James Murray
VERSION 2.1
DATE 3/10/86

B.17 pEst
pEst [cmd] -- parameter estimation program.

USAGE
[/user/murray/commands/]pEst

DESCRIPTION
This program does parmater estimation. The program is
designed for interactive operation.

The program resides in the directory /user/murray/pEst, with
aliases in /user/murray/commands. The usePest command
facilitates access to pEst.

There is a full internal help facility which covers the
commands within pEst.

EXAMPLES
/user/murray/commands/usePest
pEst

read measured
restore current

iter 3 newton
plot
quit

CAVEATS
Current dimensions limit the program to 200 parameters and
2000 time points. The limits are all checked, so that
accidentally exceeding them will not cause the program to
crash.

ERROR HANDLING
The program attempts to recover from all errors. Such mundane
errors as exceeding dimension limits, or giving a non-existent
file name or signal name are all caught. The program should
not crash, regardless of what junk you feed it for commands.
Infinite or NaN quantities in the data may crash it. If you

succeed in crashing the program in any other way, please let
me know.

SEE ALSO
bindPEst, thPlot, usePest, internal help

FILES
current current program status.
measured time history data file.
computed time history file of estimated variables.
pEst_thplot.temp scratch file for communicating with thplot

IMPLEMENTATION
Fortran program.

The time history data file interface routines are used to read
the data files. See the help topic fileInterface for
discussions of the file interface subroutines. You must write
customized versions of these routines to use pEst on data
files not supported by the standard ones.

KEYWORDS
program pEst,
parameter estimation,
mmle

AUTHOR James Murray - NASA Dryden

VERSION 2.1
DATE 10/28/85

48

B.18 Plot

plot [ecmd] -- plot fits of currently active responses, control,
and extras

USAGE
plot [+res{iduals]] [+u | +clontrols] | +i[nputs]] [+ex[tras]]

PARAMETERS
+res

If this flag is turned on, the fit residuals are also
plotted. Default is -res.

+u
If this flag is turned on, the contol signals are also
plotted. Default is -u.

+ex

If this flag is turned on, the extra signals are also
plotted. Default is -ex.

DESCRIPTION
Enters thPlot program and automatically plots time history
fits of all currently active response variables. Fit
residuals and other signals are selectively plotted. Upon
completion of the time history plots, control is returned to
pEst.

This command differs from the thplot command in that the
thplot command expects you to interactively enter any commands
to the thplot program. That allows more flexibility in what
is plotted, but requires more input from the user. The plot
command, in contrast neither expects nor allows interactive
input during the plotting.

EXAMPLES
plot
plot +res
plot +u +extra

CAVEATS
As currently implemented, the plot command creates a file
called pEst_thplot.temp, used for input to the thplot program.
Any pre-existing user file of that name will be overwritten
(and later deleted).

ERROR HANDLING
Automatically uses the write command to create the computed

49

time history file. Therefore, all of the error handling
discussed under that command applies. If the write command
fails to write a computed time history file, the plot command
will terminate and return to the pEst command line without
doing any plots. If a bad flag is specified, the plot command
will terminate and return to the pEst command line without
doing any plots.

SEE ALSO
thplot, write

KEYWORDS
plot command,
plot response fits, residuals, controls/inputs, and extras

AUTHOR James Murray - NASA Dryden
VERSION 2.1
DATE 11/19/85

B.19 Quit
quit [cmd] -- save current status and exit pEst

USAGE
quit

DESCRIPTION
Writes current program status and computed time history files,
and exits pEst. The effect is the same as doing a save
command with no parameter, followed by an abort command.

EXAMPLES
quit

SEE ALSO
abort, write, save

KEYWORDS
quit command,
save current status and quit/exit pEst

AUTHOR James Murray - NASA Dryden
VERSION 2.1
DATE 11/19/85

B.20 Read

read [cmd] -- read measured time history file

USAGE
read [fileName]

PARAMETERS
filename
filename (or pathname) of the file to be read. If not
specified, it defaults to the same name as last specified on
a read command. If no fileName has been specified by any
read command in the current run, the name defaults to
‘measured’.

DESCRIPTION
Reads a measured time history data file. A measured time
history file must be read before pEst can do anything of
consequence. On initial startup, the program attempts to read
a time history file named ’measured’. If this attempt fails
for any reason, you will be unable to do much until you do a
successful read command. The read command can also be used,
after completing analysis of one maneuver, to switch to a new
data set for analysis.

A few program variables are automatically reset whenever a
read command is successfully executed. These are variables
that are closely associated with the individual maneuver and
unlikely to be meaningfully carried over from one case to
another.

Primarily, all maneuver and window times are redefined. The
maneuver times are automatically determined by looking for
time dropouts of greater than 1 second (exact number subject
to future change). The window times are set to equal the
maneuver times by default.

The avg_ constants are also reset to the average of the
measured data for the maneuver. It is possible to manually
override these values if you want to (for instance if the
measured values are wrong), but it is unlikely that you want
such overrides to automatically carry over from one maneuver
to another (in fact it could cause great confusion if you were
not aware that such carryover was occuring). Therefore,
average values are reset each time a maneuver is read.

EXAMPLES
read

51

read measured.casel3

ERROR HANDLING
The program gives error messages and returns to the command
line on encountering any error. Previously read data may be
overwritten by a failed attempt to read new data; in this
case, the program will clear out all of the corrupted data and
you will have to execute a new successful read command before
doing much else constructive.

All commands that use time history data will recognize and
appropriately handle the case where no valid time history data
is available. (Appropriate handling usually means that the
command will give an error message and refuse to execute).

SEE ALSO
write, save, restore

KEYWORDS
read command,
read/load time history data file

AUTHOR James Murray
VERSION 2.1
DATE 11/19/85

3.21 Response
response/output [cmd] -- display or set response equation status

USAGE
response/output <resp_list> +active weight=<weighting>

resp_list
List of response variable names, separated by commas or
blanks. May alternatively be ’all’ (for all responses),
’active’ (for the active responses), or one of several
synonyms for active. If not specified, it defaults to all
active responses.

+active (+on,+yes,+vary,+enable,+t,-inact,-deact,~disable,
-no,-f)
Switch to activate or deactivate computation of the
referenced responses. If +active is set, the referenced
response equation(s) will be activated. If -active is set,
they will be deactivated. If neither is set, the status of
the response equations will remain unchanged.

weighting
Floating point value for response error weighting. If this
parameter is specified, the cost function weightings of all
the referenced outputs will be set to the specified value.
If it is not specified, the weightings will be left
unchanged. The keyWord may be abbreviated to anything
starting with w.

DESCRIPTION
Displays or sets status of response variable(s). Anything
beginning with ’resp’ or ’out’ will be accepted for this
command.

Note that the weighting is irrelevant for responses that are
inactive. An inactive response makes no contribution to the
cost function, making its effective weighting zero. The
differences between setting the weighting to O and
deactivating the response are two: First, the responses are
still computed (just not used in the cost function) if the
weighting is zero for an active response; if the response is
inactive, it is never computed. Obviously, if you need the
response computation for some reason other than its use in the
cost function (perhaps you want a plot of it), you must have
the response active. This may involve substantial computation
time, so if you don’t need the response, it is preferrable to
deactivate it. The second difference is just one of
convenience: if you deactivate a response, the program still
remembers what its weighting was in case you later want to
re-activate it with the same weighting as before.

EXAMPLES
response
resp alpha +off
output beta +activate w=100.0

SEE ALSO
state [cmd]
responses [var]

KEYWORDS
response command,
set/list/show/display response/output equation/variable
status/weighting

AUTHOR James Murray - NASA Dryden
VERSION 2.1
DATE 3/18/86

53

B.22 Responses
responses [var] -- response signals
DESCRIPTION

The following are the names and brief descriptions of the
response signals currently defined in pEst.

NAME DESCRIPTION

v velocity, ft/sec

alpha angle of attack, deg

q pitch rate, deg/sec

theta pitch attitude, deg

an normal acceleration, g’s

ax longitudinal acceleration, g’s

qdot pitch acceleration, deg/seck*2

beta angle of sideslip, deg

p roll rate, deg/sec

r yaw rate, deg/sec

phi bank angle, deg

ay lateral acceleration, g’s

pdot roll acceleration, deg/sec**2

rdot yaw acceleration, deg/sec**2
SEE ALSO

response, parameters, constants, flags, states, controls,

extras

KEYWORDS

response/output signals/names/descriptions

AUTHOR James Murray
VERSION 2.1
DATE 11/22/85

B.23 Restore
restore [cmd] -- restore status from file

USAGE
restore [fileName]

PARAMETERS
filename
filename (or pathname) of the file to be read. If not
specified, it defaults to the same name as last specified on

a restore command. If no fileName has been specified by any
restore command in the current run, the name defaults to
’current’.

DESCRIPTION
Reads program status from the specified file. The program
status includes the values of all parameters and program
options. The file can be from either of two sources. The
file may have been created by an independent program, usually
by looking up predicted derivative values from a data table;
this is often the case when starting a new case.
Alternatively, the file can have been created from a save
command; in this case, the program will be restored to the
same status as when the save command was executed.

A file created while analyzing one case can be restored while
analyzing a different set of time history data. This allows,
for instance, a convenient way of starting the estimation from
converged values obtained from a case at a similar flight
condition. Some values, such as the parameter estimates, can
be meaningfully transfered from one case to another in this
manner. However, other values on the current status file are
unlikely to be useful (or legal) when applied to a different
time history data file.

In particular, the window definitions are closely tied to
specific maneuvers. Window times for one case are likely to
be outside of the maneuver times for a different case.

The avg_ constants are also closely tied to the specific
maneuvers; they usually equal the average measured values for
the maneuver. It is possible to manually override these
values if you want to (for instance if the measured values are
wrong), but it is unlikely that you want such overrides to
automatically carry over from one maneuver to another (in fact
it could cause great confusion if you were not aware that such
carryover was occuring).

To avoid these undesired carryovers, while allowing carryover
of other pertinent parameters, the restore command checks for
consistency between the status file and the time history data
being analyzed. The status file includes a record of the
maneuver times and average measured signal values to
facilitate this comparison. If the data on the status file is
consistent with the time history data being analyzed, then all
parameters from the status file are accepted, including window
times and avg_ constants. If the data on the status file is
inconsistent with the maneuver being analyzed, then the window

55

times and avg_ constants on the status file are rejected;
instead, the windows are set equal to the available maneuvers
and the avg_ constants are set equal to the average measured
values.

For similar reasons, the window times and avg_ constant values
are reset every time a read command is executed.

On initial startup, if the automatic read command works, the
program automatically attempts a restore command for the file
name ’current’.

Unlike the read command, which must succeed before you can
analyze any data, the restore command is technically optional.
It is possible to analyze a case without ever reading a status
file. All of the items set by the restore command have
default values. In some cases where no meaningful default is
possible, the default value is an illegal one (for instance
weight defaults to 0). Such values must be reset either by a
restore command or by manual entry before estimation can
procede. The program will give an error message if you
attempt estimation without setting these variables to legal
values.

EXAMPLES
restore
restore current.casel3

CAVEATS
Because of the interaction between the read and restore
commands, you must be cautious of the order in which you
execute them. If you want to do a read command and a restore
command to completely restore a previously saved status, the
read command must precede the restore command.

The data on the saved file is in ascii form, accurate to
’only’ about 10 digits. For ’reasonable’ situations, this
should be far more accuracy than you will need. For highly
unstable systems, it is possible for the rounding to 10 digits
to make the restored state noticably different than that
originally saved. The validity of the estimates for any case
in which this effect is noticable is in serious doubt anyway.

SEE ALSO
save, read

KEYWORDS
restore command,

restore/read/load current status

AUTHOR James Murray
VERSION 2.1
DATE 11/19/85

3.24 Save

save [cmd] -- save current status to a file.

USAGE
save [fileName]

PARAMETERS
filename
filename (or pathname) of the file to be written. If not
specified, it defaults to the same name as last specified on
a RESTORE command. If no fileName has been specified by any
restore command in the current run, the name defaults to
’current’.

DESCRIPTION
Saves current program status to a file. The program status
includes the values of all parameters and program options.
The resulting file can be used for several purposes: The
program can later be restored to the saved point by using the
restore command. The file can be input to plotting programs
or other programs that use the parameter values estimated by
pEst. The file can also be printed (it is ascii) as a record
of the results.

EXAMPLES
save
save current.case23.19Nov85

CAVEATS

Note that the default fileName is taken from the last RESTORE
command, rather than the last SAVE command. The logic behind
this is that a save command with no arguments is taken as a
request to save the current status in place of the file that
you started with; this is the most usual mode of operation. A
save specifying a different fileName is assumed to be asking
to save a specific status to a specific file for special
purposes. All subsequent work reverts to the original file.

BUGS
By normal Fortran defaults, the file is created with the

-1

7

+fortranCCTL flag set, in spite of the fact that the file does
not have fortran carriage control characters in column 1. 1In
order to correctly print the file, you must explicitly specify
-fortranCCTL in the print command (or do a modifyFile to
correctly set the flag maintained with the file).

SEE ALSO
restore, write

KEYWORDS
save command,
write/save current status

AUTHOR James Murray
VERSION 2.1
DATE 11/19/85

.25 Set
set [cmd] -- set program variables.

USAGE
set <variable-name> <value>

PARAMETERS
variable~name
Name of the variable to be set.

value
Value to be used for the variable. The syntax and legal
values may vary for different variables. In particular,
some variables have several components and the value syntax
must specify which component is being set.

DESCRIPTION
The set command sets the values of program variables. For a
list of the available variables, do "help variables". For

details about a specific variable, do help on the variable
name.

EXAMPLES
set msglevel 80
set integMeth euler
set gradDelta 0.00001
set window time 0.5 9.5

SEE ALSO

show

KEYWORDS
set command,
set/change program variable values

AUTHOR James Murray - NASA Dryden

VERSION 2.1
DATE 11/20/85

B.26 Show
show/list/display [cmd] -- show values of program variables

USAGE
show/list/display <variable-name>

DESCRIPTION
Shows the value of the specified program variable. For a list
of the available variables, do "help variables". For details

about a specific variable, do help on the variable name.

List and display are accepted as synonyms. Sh and disp are
acceptable abbreviations.

EXAMPLES
list integ
show bound
display window
show statistics

SEE ALSO
set

KEYWORDS
show/list/display command,
show/list/display program variable values

AUTHOR James Murray - NASA Dryden

VERSION 2.1
DATE 11/20/85

[3.27 State

state [cmd] -- display or set state equation status

59

Us

AGE
state <state_list> +active limit=<limit>

PARAMETERS

state_list
List of state names, separated by commas or blanks. May
alternatively be ’all’ (for all states), ’active’ (for the
active states), or one of several synonyms for active. If
not specified, it defaults to all active states.

+active (+on,+yes,+vary,+enable,+t,-inact,—deact,-disable,
-no,-f)
Switch to activate or deactivate integration of the
referenced states. If +active is set, the referenced state
equation(s) will be integrated. If -active is set, they
will not be integrated. If neither is set, the status of
the state equations will remain unchanged.

limit
The limit on the absolute value of the referenced states
allowed during integration. Any integration that exceeds
this limit will be abandoned. If this parameter is not
specified, the previous limits remain unchanged.

DESCRIPTION

60

Displays or sets status of state equation(s).

The system equations can change fairly significantly depending
on which states are active and which ones are inactive. If
the state is inactive, no computed value for that state
variable is defined; thus response equations or other state
equations that use the deleted state variable must be revised.
The revision done is to substitute some other quantity for the
unavailable state variable.

By default, if a state is deactivated, the corresponding
measured quantity is substituted. Any output bias on the
measured quantity is subtracted before substituting it. Also
the measured flow angles are corrected to the center of
gravity before substituting them.

The variables with names like use_avg_alpha can force
alternate substitutions. If use_avg_alpha is true, then the
constant avg_alpha is substituted wherever the computed alpha
state would otherwise have been used. In this case, the
substitution occurs even if the alpha state is active.
Corresponding comments apply to the other states.

EXAMPLES
state theta +on 1imit=1000
state all
state phi -active

SEE ALSO
response [cmd]
states [var]

KEYWORDS
state command,
set/change/list/show/display state equation/variable status,
add/delete state equations

AUTHOR James Murray - NASA Dryden

VERSION 2.1
DATE 3/17/86

B.28 States
states [var] -- state variables
DESCRIPTION

The following are the names and brief descriptions of the
state variables currently defined in pEst.

NAME DESCRIPTION
v velocity, ft/sec
alpha angle of attack, deg
q pitch rate, deg/sec
theta pitch attitude, deg
beta angle of sideslip, deg
p roll rate, deg/sec
r yaw rate, deg/sec
phi bank angle, deg

SEE ALSO

state, parameters, constants, flags, responses, controls, extras

KEYWORDS
state variables/names/descriptions

AUTHOR James Murray
VERSION 2.1
DATE 11/22/85

61

B.29 Statistics

stats [var] -- time history statistics

USAGE
show stat[istics]

DESCRIPTION
The ’show statistics’ command lists the average value of every
measured response, input, and extra signal for the time
history data currently loaded.

Statistics is not really a ’variable’ as it can not be set; it
can only be displayed.

EXAMPLES
show stats
show statistics

SEE ALSO
show

KEYWORDS
statistics variable,
maneuver/signal statistics/stats/averages

AUTHCR James Murray
VERSION 2.1
DATE 11/21/85

B.30 thPlot
thplot [cmd] -- execute thPlot program

USAGE
thplot

DESCRIPTION
Writes time histories of computed responses, then enters
thPlot program. Upon termination of the thPlot program,
control is returned to pEst. The computed responses are
written by an automatic write command with no arguments;
therefore the file name is whatever such a write command would
use (usually the name ’computed’)

This command differs from the plot command in that the thplot
command expects you to interactively enter any commands to the

thplot program. This allows more flexibility in what is
plotted, but requires more input from the user. The plot
command, in contrast neither expects nor allows interactive
input during the plotting.

EXAMPLES
thplot

ERROR HANDLING
Automatically uses the write command to create the computed
time history file. Therefore, all of the error handling
discussed under that command applies. If the write command
fails to write a computed time history file, the plot command
will terminate and return to the pEst command line without
doing any plots.

SEE ALSO
plot, write

KEYWORDS
thplot command,
time history plots

AUTHOR James Murray - NASA Dryden

VERSION 2.1
DATE 11/19/85

B.31 Title

title [var] -- title for current file and plots.
USAGE
show title

set title ’<title>’

DESCRIPTION
Title is the title used on the current file and on the top of
each plot page. The length of the title is limited to 40
characters; longer titles are truncated without comment. If
the title contains imbedded blanks (not uncommon), the title
must be enclosed in quotes; otherwise the title will be
truncated to the first word.

The default is title = ’ .

EXAMPLES
show title

63

set title ’x29 flight 20 case 10’

SEE ALSO
show, set

KEYWORDS
title variable,
plot title

AUTHOR James Murray
VERSION 2.1
DATE 2/19/86

B.32 Version

version [topic] -- changes in pEst with version 2.1

DESCRIPTION
pEst version 2.1 is now released. The following describes the
changes between version 2.1 and the previous release, version
2.0. Access to the new version is automatic when you use pEst
normally. The previous version will be retained for an
interim period as a backup. To access the previous version,
use the command pEst2.0.

COMPATABILITY
Version 2.1 has several small differences from version 2.0.
The exact syntax of a fow of the commands has changed. This
will require getting used to the revised syntax and changing
any command files; the changes are all small.

If you have a customized set of user routines, you must make a
minor change to the argument list of defineNames; this change
is small and mostly involves deleting a few lines from the
routine.

There are several additions to the current file, but version
any current files from version 1.6 or later will be accepted
without error. Any program that reads current files must be
able to accept the new fields.

USER ROUTINES
A1l the arguments have been removed from subroutine
defineNames. They were not being used for anything
constructive anyway and they caused excessive clutter in the
main program.

64

The semantics of the interface to subroutine computeZ have
changed. We now allow computeZ to change its xc (computed
state) argument. Any such change constitutes the correction
step of a predictor-corrector algorithm such as a Kalman
filter. This change is solely one of establishing an expanded
convention. It requires no code changes in old code, but just
liberalizes what new code is allowed to do.

USAGE
The param command has been expanded to allow optional display
of or reset to the predicted values. See the param helpFile
for details.

The title variable has been added to allow the title used on
the current file to be modified. The same title is now also
put on time history plots. See the title helpFile for
details.

The plot command uses thPlot’s +expand option to expand scales
to the full screen width.

An extension to the state command allows the state variable

limits to be displayed and changed. These limits are alsc now

saved on the current file. The state variable limits are what
stops the integration when it goes unstable.

There are 5 new parameters (gAlpha,gQ,gBeta,gP,gR) in the
default user routines. These parameters are gains in the
filter error formulation. Among other things, they can be
used to stabilize the estimation for unstable systems. Their
use at this time is still experimental.

DOCUMENTATION
The helpfiles mentioned in the following "SEE ALS0" section
have been modified to reflect the changes. The helpFile
format for showing command syntax has been redone to be more
consistent with Elxsi helpFiles (also a little simpler). This
file is included under "help version".

SEE ALSO
param,const,flag,state,response,

KEYWORDS
pEst version 2.1 changes

AUTHOR James Murray
VERSION 2.1
DATE 3/17/86

65

B.33 Window

window [var] -- maneuver window descriptor

USAGE
show window
gset window [<window number>] [man[=]<maneuver number>]
[time[=]<start> <end>]

DESCRIPTION
A window is a time interval which is wholly contained within a
mansuver time interval. A maneuver may contain multiple
windows.

When the equations of motion are evaluated, the computed time
history is generated only for those time points contained
within the window(s). Outside of the window(s), the average
value for the output variables is used. Also, the cost
function for the estimation process depends only on those time
points within the window(s).

If, when a window is defined, the window number is not
specified, all existing windows will be deleted and the new
window will be window 1. The window number, if specified,
cannot exceed the current window count by more than 1. If the
maneuver number is not specified, the default maneuver number
1 will be used. The window start and end times must be
specified and are given relative to the starting time of the
maneuver.

The default is that the windows exactly equal the available
maneuvers.

EXAMPLES
show windows
set wind 1 time=0.5-9.5
set wind man=3 time 1.25 5.55

SEE ALSO
show, set

KEYWORDS
window variable,
multiple maneuvers,
start/stop times,
time segments/intervals/windows

AUTHOR James Murray

66

VERSION 2.1
DATE 11/21/85

B.34 Write
write [cmd] -- write computed time history file

USAGE
write [fileName]

PARAMETERS
filename
filename (or pathname) of the file to be written. If not
specified, it defaults to the same name as last specified on
a write command. If no fileName has been specified by any
write command in the current run, the name defaults to
'computed’ .

DESCRIPTION
Writes a computed time history data file. This file is most
often used for plotting, but can have numerous applications.
It could be input to programs to analyze the residual
statistics. It also allows pEst to be used as a simple batch
simulator for other purposes.

The signals written to the file are the calculated states
(-s-hat suffixes), the calculated responses (-hat suffixes),
and the residuals (~res suffixes). The names of all signals
are derived by appending the indicated suffixes to the basic
state or response variable name. The residual is defined to
be the measured response minus the calculated response.

EXAMPLES
write
write computed.casel2

ERROR HANDLING
If the output file can not be opened or if integration of the
equations is disallowed for any reason, the write command will
give an error message and return to the command line.

If the integration fails part way through (usually because it
goes unstable), the file is written normally up to the point
where the integration failed. The remainder of the file is
written with average measured values substituting for the
unavailable calculated responses. This is done to accomodate
the plotting program, which wants the same time points in both

67

the measured and calculated data files in order to plot a fit.

SEE ALSO
read, plot, thplot

KEYWORDS
write/save command,
write/save computed time history data

AUTHOR James Murray

VERSION 2.1
DATE 11/19/85

(8

REFERENCES

I. Taylor, Lawrence W., Jr.; and Iliff, Kenneth W.: A Modified Newton-Raphson Method for
Determining Stability Derivatives From Flight Data. Second International Conference on
Computing Methods in Optimization Problems, San Remo, Italy, Sept. 9-13, 1968,

Academic Press, New York, 1969, pp. 353-364.

2. Maine, Richard E.; and Lliff, Kenneth W.: User’s Manual for MMLE3, A General FORTRAN
Program for Maximum Likelihood Parameter Estimation. NASA TP-1563, 1980.

3. Maine, Richard E.: Manual for GetData Version 3.1—A Fortran Utility Program for Time History
Data. NASA TM-88288, 1987.

69

. Report No.
NASA TM-88280

2. Government Accession No. 3.

Recipient's Catalog No.

. Title and Subtitie

pEst Version 2.1 User’s Manual

. Report Dat
épgptemker 1987

6. Performing Orgsnization Code

. Author(s)

James E. Murray and Richard E. Maine

8. Performing Organization Report No.
H-1390

10. Work Unit No.

. Performing Organization Name and Address

NASA Ames Research Center
Dryden Flight Research Facility
P.O. Box 273, Edwards, CA 93523-5000

RTOP 505-68-31

11. Contract or Grant No.

13. Type of Report and Period Covered

. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

Technical Memorandum

14. Sponsoring Agency Code

. Supplementary Notes

. Abstract

T'his report is a user’s manual for version 2.1 of

pEst, a FORTRAN 77 computer program for

interactive parameter estimation in nonlinear dynamic systems. The pEst program allows the
user complete generality in defining the nonlinear equations of motion used in the analysis. The
equations of motion are specified by a set of FORTRAN subroutines; a set of routines for a
general aircraft model is supplied with the program and is described in the report. The report
also briefly discusses the scope of the parameter estimation problem the program addresses. The

report gives detailed explanations of the purpose

and usage of all available program commands

and a description of the computational algorithms used in the program.

17,

Key Words (Suggested by Author(s})
Parameter estimation
Stability and control derivatives

18. Distribution Statement

Unclassified — Unlimited

Subject category 61

19,

Security Classif. (of this report)
Unclassified

Unclassified

20. Security Classif. (of this page)

22. Price”®
A04

21. No. of Pages

75

*For sale by the National Technical Information Service, Springfield, Virginia 22161.

	Cover Page
	Title Page
	Contents
	Summary
	Introduction
	The Parameter Estimation Problem
	Cost Function
	Equations of Motion

	Interactive Design Philosophy Implemented in pEst
	Interface to Other Programs
	Measured Time History Data
	Program Status File
	Computer Time History Data
	Command Files
	Plot Commands File

	How to Run the Program
	Help Command
	Program Startup Commands
	Program Termination Commands
	Plotting Commands
	Interate Command
	System Variable Commands
	Program Variable Commands
	Advanced Commands

	Algorithms
	Minimization Algorithms
	Gradient Computation
	Interating the Equation of Motion

	Standard User Routines
	Equations of Motion
	System Variables and Names
	Tables 1 & 2
	Table 3

	Appendix A
	Appendix B
	References
	Report Documentation Page

